In order to give some insight I will show a derivation for $a=1$, where a closed form in terms of the Inverse Tangent Integral is:
$$\bbox[10pt, border:2px, lightblue]{\int_1^s \frac{\operatorname{arccosh}x}{\sqrt{(x-1)(s-x)}}dx=4\operatorname{Ti}_2\left(\sqrt{\frac{s-1}{2}}\right),\ s>1}$$
We'll start off with the substitution $\frac{s-x}{s-1}=t$ to get:
$$\int_1^s \frac{\operatorname{arccosh}x}{\sqrt{(x-1)(s-x)}}dx=\int_0^1 \frac{\operatorname{arccosh}(s-(s-1)t)}{\sqrt{t}\sqrt{1-t}}dt\overset{t=x^2}=2\int_0^1\frac{\operatorname{arccosh}(s-(s-1)x^2)}{\sqrt{1-x^2}}dx$$
$$\overset{IBP}=4\int_0^1 \frac{x\arcsin x}{\sqrt{(1-x^2)\left(\frac{s+1}{s-1}-x^2\right)}}dx\overset{x=\sin t}=4\int_0^\frac{\pi}{2}\frac{t\sin t }{\sqrt{\frac{2}{s-1}+\cos^2 t}}dt\overset{\cos t=x}=4\int_0^1\frac{\arccos x}{\sqrt{\frac{2}{s-1}+x^2}}dx$$
$$\overset{IBP}=4\int_0^1 \frac{\operatorname{arcsinh} \left(x\sqrt{\frac{s-1}{2}}\right)}{\sqrt{1-x^2}}dx\overset{x=\sin t}=4\int_0^\frac{\pi}{2}\operatorname{arcsinh} \left(\sqrt{\frac{s-1}{2}}\sin t\right)dt$$
$$=4\sum_{n=0}^\infty \frac{(-1)^n\binom{2n}{n}}{(2n+1)4^n}\left(\sqrt{\frac{s-1}{2}}\right)^{2n+1}\int_0^\frac{\pi}{2}\sin^{2n+1}t dt=4\sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)^2}\left(\sqrt{\frac{s-1}{2}}\right)^{2n+1}$$
Above was used the Maclaurin series for $\operatorname{arcsinh} z $ and the Wallis integral. Finally, using the definition of the inverse tangent integral we can rewrite the result as announced.
Some steps may be simplified in the above, but I don't think it really matters. For a general case it doesn't seem promising because, by the same approach we get:
$$\int_a^b \frac{\operatorname{arccosh} x}{\sqrt{(x-a)(b-x)}}dx=4\int_0^1 \frac{x\arcsin x}{\sqrt{\left(\frac{b-1}{b-a}-x^2\right)\left(\frac{b+1}{b-a}-x^2\right)}}dx$$
And we can't simplify that thing inside the square root via $x=\sin t$.