Worth note: Shanks baby-giant step works in a group knowing only an order bound, e.g. $\!\!\bmod 59\!:$
$\qquad\,\ \begin{array}{c | c } r & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \hline
11^{\large r}\! & 1 & 11 & 3 & 33 & 9 & \color{#0a0}{40} & 27 & \color{#c00}2 \end{array}\ $ via $\ 11^{\large\color{} 2}\equiv 3\,$ so $\!\!\begin{align}&\ \ 1\to \ \ 3\to\ 9\, \ldots\\ &\ \ \ \ \ \ 11\to 33\to 99\!\equiv\! \color{#0a0}{40}\,\ldots\end{align}$
$\qquad\ \ \, \begin{array}{c | c } q & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ \hline
\color{#c00}2^{\large q} & 2 & 4 & 8 & 16 & 32 & 5 & 10 & 20 & \color{#0a0}{40} \end{array}\ $ as above, all trivial modular writhmetic.
Hence $\, 11^{\large 5} \equiv \color{#0a0}{40}\equiv 2^{\large 9}\equiv (11^{\large 7})^{\large 9}\,\Rightarrow\, \bbox[6px,border:1px solid #c00]{1\equiv 11^{\large 63-5}\equiv 11^{\large 58}}$
and $58$ is the least, else for smaller $\,7q\!-\!r\!:\ 11^{\large 7q-r}\equiv 1\,\Rightarrow\, 2^{\large q}\equiv 11^{\large r}$ contra table values.
This may be faster than the other methods since here all arithmetic is trivial $ $ [$2\cdot n\,$ or $\,3\cdot n$].
But generally this method will be less efficient than using divisibility constraints and/or deeper ideas (e.g. the Order Test implicitly used in lulu's answer or, by Euler's criterion $\,11^{\large 29}\!\equiv (11\,|\,58)\equiv -1\,$ by a quick Legendre symbol computation). However, the baby-giant step method is well-worth knowing since it proves useful in various contexts.
See here for general algorithms for order computation (some of which use this and related ideas).