I'm trying to prove that symmetric matrix (with real entries) is diagonalizable. Here, Ittay Weiss proved the result. I'm following with his argument, but I couldn't properly understand the following part.
Comment: To triangulate the matrix, use induction of the order of the matrix. For $1\times 1$ it's trivial. For $n\times n$, first find any arbitrary eigenvector $v_1$ (one such must exist). Thinking of the matrix as a linear transformation on a vector space $V$ of dimension $n$, write $V$ as $V=V_1\oplus W$, where $V_1$ is the subspace spanned by $v_1$. Then $W$ is $n-1$-dimensional, apply the induction hypothesis to $A|_{W}$ to obtain a base $v_2,\ldots, v_n$ in which $A|_W$ is triangular. It now follows that in the base $v_1,\ldots, v_n$ $A$ is triangular.
I'm having trouble understanding the induction part. Especially, what does $A|_W$ mean? Any help would be thankful!