Want to get this: $$\tan z = \frac{1}{i}\frac{{{e^{iz}} - {e^{ - iz}}}}{{{e^{iz}} + {e^{ - iz}}}} = \frac{1}{i}\left( {1 - \frac{2}{{{e^{2iz}} - 1}} + \frac{4}{{{e^{4iz}} - 1}}} \right)$$ as a start. Getting lost in the algebra
$$\frac{{{e^{iz}} - {e^{ - iz}}}}{{{e^{iz}} + {e^{ - iz}}}} = \frac{{{e^{iz}} + {e^{ - iz}} - 2{e^{ - iz}}}}{{{e^{ - iz}} + {e^{iz}}}} = \frac{{{e^{iz}} + {e^{ - iz}} - 2{e^{ - iz}}}}{{{e^{ - iz}} + {e^{iz}}}} = 1 - \frac{{2{e^{ - iz}}}}{{{e^{ - iz}} + {e^{iz}}}}$$
and also $$\frac{{2{e^{ - iz}}}}{{{e^{ - iz}} + {e^{iz}}}} = \frac{2}{{{e^{2iz}} + 1}} = \frac{{ - 2 + 4}}{{{e^{2iz}} + 1}} = \frac{{ - 2}}{{{e^{2iz}} + 1}} + \frac{4}{{{e^{2iz}} + 1}}$$
Please someone, show me the right way.