It's easy if you solve them stepwise - two-at-a-time.
$x\equiv -2\, \bmod 11\, \&\, 13 \iff x\equiv -2\pmod{\!143}\ $ by CCRT = Constant case CRT. Similarly
$\ x \equiv\ 1\,\bmod\ 2\ \, \&\ \ 5\ \iff\, x\ \equiv\ 1\ \pmod{\!10}.\ $ Solving them pairwise we obtain:
$\!\!\bmod \color{#c00}{10}\!:\,\ 1\equiv x\equiv -2+143\,\color{#c00}i\equiv -2+3i\iff 3i\equiv 3\iff \color{#c00}{i\equiv 1}$
Therefore $\ x = -2+143(\color{#c00}{1\!+\!10j}) = \color{#0a0}{141 + 1430j}$
$\!\!\bmod 7\!:\,\ 3\equiv x\equiv\color{#0a0}{ 1+2j}\iff 2j\equiv 2\iff j\equiv 1$
Therefore $\,x \equiv 141+1430(1\!+\!7k) = \color{#90f}{1571 + 10010k}$
$\!\!\bmod 3\!:\,\ 2\equiv x\equiv\color{#90f}{ 2+2k}\iff k = 0\iff k =3n$
Therefore $\,x \equiv 1571+ 30030n.\,$ Just a couple minutes mental arithmetic (with practice).
Plug this in into the equation $x \equiv 9 \pmod {11}$ to get $13 k + 11 \equiv 9 \pmod{11}$
$13k \equiv -2 \equiv 9 \pmod{11} \Rightarrow 2k \equiv 9 \pmod{11} \Rightarrow k \equiv 10 \pmod{11}$.
So $x$ is now $13(11p + 10) + 11$ for some integer $p$. Now plug this into another equation and keep going until you get $x = 1571 + 30030 * q$ $ $ for any integer $q$
– Francisco José Letterio Aug 09 '19 at 19:18