We will use the following fact.
Lemma. There is a real number $\gamma$ such that
$$
\lim\limits_{n\rightarrow\infty}\left(H_n-\ln n\right) = \gamma,
$$
where $H_n=1+\frac{1}{2}+\ldots+\frac{1}{n}$ is a $n$-th harmonic number.
Now, it's clear that
$$
\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2n}=H_{2n}-H_n.
$$
Hence,
$$
\lim\limits_{n\rightarrow\infty}\left(\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2n}\right)=
\\
\lim\limits_{n\rightarrow\infty}\left(H_{2n}-H_n\right)=
\lim\limits_{n\rightarrow\infty}(H_{2n}-\ln (2n))-\lim\limits_{n\rightarrow\infty}(H_n-\ln n) + \ln 2 = \gamma-\gamma+\ln 2 = \ln 2.
$$
For the second one note that from the lemma we obtain that
$$
\lim\limits_{n\rightarrow\infty}\frac{H_n-\ln n}{\ln n} = 0,~\text{so}~\lim\limits_{n\rightarrow\infty}\frac{H_n}{\ln n} = 1.
$$
Thus,
$$
\lim\limits_{n\rightarrow\infty}\frac{\frac{1}{2}+\ldots+\frac{1}{n}}{\ln n} = \lim\limits_{n\rightarrow\infty}\frac{H_n-1}{\ln n} = 1.
$$