3

It is easy to prove that $\sin(a) < \tan(a)$ when $0 < a < \pi/2$, but how can I prove that $\sin(a) < a < \tan(a)$ when $0 < a < \pi/2?$

StubbornAtom
  • 17,052
Kevin
  • 365
  • 1
  • 10

2 Answers2

5

For $0 \le a \lt \frac{\pi}{2}$, define

$$f(a) = a - \sin(a) \tag{1}\label{eq1}$$

$$g(a) = \tan(a) - a \tag{2}\label{eq2}$$

From \eqref{eq1}, note $f(0) = 0$. For $a \gt 0$, $f'(a) = 1 - \cos(a) \gt 0$ so $f(a) \gt 0$, giving

$$\sin(a) \lt a \tag{3}\label{eq3}$$

From \eqref{eq2}, $g(0) = 0$. For $a \gt 0$, $g'(a) = \frac{\cos(a)}{\cos(a)} + \frac{\sin^2(a)}{\cos^2(a)} - 1 = \frac{\sin^2(a)}{\cos^2(a)} \gt 0$ so $g(a) \gt 0$, giving

$$a \lt \tan(a) \tag{4}\label{eq4}$$

Putting \eqref{eq3} and \eqref{eq4} together gives

$$\sin(a) \lt a \lt \tan(a) \tag{5}\label{eq5}$$

for $0 \lt a \lt \frac{\pi}{2}$.

John Omielan
  • 47,976
1

Let $$f(x)=\sin x-x \rightarrow f'(x)=\cos x-1 \le 0.$$ This means f$(x)$ is a decreasing function in $[0,\pi/2]$, so $f(x) \le f(0) \Rightarrow \sin x \le x, x \in [0,\pi/2].$$

Next take $$g(x)=\tan x -x \Rightarrow g'(x)=\sec^2 x-1\ge 0.$$ So $g(x)$ is an increasing fumction for $x \in [0, \infty).$ Then $$g(x) \ge g(0) \Rightarrow \tan x \ge x, x\in[0,\infty). $$

Z Ahmed
  • 43,235