Introduction. The $\Gamma_q$ function is a $q$-analog of the $\Gamma$ function defined by
$$
\Gamma_q(x) = \frac{(q;q)_\infty}{\left(q^x;q\right)_\infty}(1-q)^{1-x},\quad |q|<1,
$$
where $(a;q)_\infty$ is a $q$-Pochhammer symbol.
Ramanujan's $\psi$ function defined by
$$
\psi(q)= \sum_{n=0}^{\infty} q^{n(n+1)/2} = \frac{\left(q^2;q^2\right)_\infty}{\left(q;q^2\right)_\infty},
$$
where the infinite product representation arises from the Jacobi triple product identity.
We can express $\Gamma_{q}\left(1/2\right)$ in terms of the $\psi$ function as the following:
$$
\Gamma_q\left(\frac12\right) = \psi\left(\sqrt{q}\right)\sqrt{1-q}.
$$
The $\psi$ function and related functions $-$ so-called Ramanujan's theta functions $-$ are widely studied in Berndt's Ramanujan's Notebooks. We summarize here the relevant parts, and refer to Berndt for details.
Values of Ramanujan's $\psi$ function. For $0 < x < 1$, let
$$
z = {_2}F{_1}\left(\tfrac12,\tfrac12;1;x\right)
$$
and
$$
y = \pi \frac{{_2}F{_1}\left(\tfrac12,\tfrac12;1;1-x\right)}{{_2}F{_1}\left(\tfrac12,\tfrac12;1;x\right)},
$$
where ${_2}F{_1}$ is the Gaussian hypergeometric function.
We have
\begin{align}
\psi\left(e^{-y/4}\right) &= \sqrt{z}\left(1+x^{1/4}\right)^{1/2}\left(\tfrac12 \left(1+\sqrt{x}\right)\right)^{1/8}\left(xe^y\right)^{1/32},\tag{1}\\
\psi\left(e^{-y/2}\right) &= \sqrt{z}\left(\tfrac12 \left(1+\sqrt{x}\right)\right)^{1/4}\left(xe^y\right)^{1/16},\tag{2}\\
\psi\left(e^{-y}\right) &= \sqrt{\tfrac12 z}\left(xe^y\right)^{1/8},\tag{3}\\
\psi\left(e^{-2y}\right) &= \tfrac12 \sqrt{z} \left(xe^y\right)^{1/4},\tag{4}\\
\psi\left(e^{-4y}\right) &= \tfrac12 \sqrt{\tfrac12 z}\left(\left(1-\sqrt{1-x}\right)e^y\right)^{1/2},\tag{5}\\
\psi\left(e^{-8y}\right) &= \tfrac14\sqrt{z}\left(1-\left(1-x\right)^{1/4}\right)e^y.\tag{6}
\end{align}
The notation for $z$ and $y$ are defined in Berndt [Part $\text{III}$, p. $101$, Entry $6$, $(6.2)$ and $(6.3)$]. The formulas $(1)\!-\!(6)$ are given with proof in Berndt [Part $\text{III}$, p. $123$, Entry $11$.].
Values of $y$ and $z$ for $x = 1/2$. It is clear that $y = \pi$ for $x = 1/2$. To evaluate $z$, we use the following identity, which is given in Berndt [Part $\text{III}$, p. $89$, $(1.4)$]. If $a$ and $b$ are arbitrary, then
$$
{_2}F{_1}\left(a,b;\tfrac12 \left(a + b + 1\right);\tfrac12\right) = \frac{\Gamma\left(\tfrac12\right)\Gamma\left(\tfrac12 \left(a + b + 1\right)\right)}{\Gamma\left(\tfrac12 + \tfrac12 a\right)\Gamma\left(\tfrac12 + \tfrac12 b\right)}.
$$
In particular, if $c$ is arbitrary, then
$$
{_2}F{_1}\left(1 - c,c;1;\tfrac12\right) = \frac{\Gamma\left(\tfrac12\right)}{\Gamma\left(1 - \tfrac12 c\right)\Gamma\left(\tfrac12 + \tfrac12 c\right)}.
$$
For $c = 1/2$, we have
$$
z = {_2}F{_1}\left(\tfrac12,\tfrac12;1;\tfrac12\right) = \frac{\Gamma\left(\tfrac12\right)}{\Gamma^2\left(\tfrac34\right)} = \frac{\pi^{1/2}}{\Gamma^2\left(\tfrac34\right)} = \frac{\Gamma^2\left(\tfrac14\right)}{2\pi^{3/2}},
$$
where we used the particular value $\Gamma\left(\tfrac12\right) = \sqrt{\pi}$ and the product identity $\Gamma\left(\tfrac14\right)\Gamma\left(\tfrac34\right) = \sqrt{2}\pi$.
Values of $\Gamma_q\left(1/2\right)$. Let
$$
a = \frac{\pi^{1/4}}{\Gamma\left(3/4\right)}.
$$
Then
\begin{align}
\Gamma_{e^{-\pi/2}}\left(\tfrac12\right) &= a2^{-11/32}\left(2^{1/4}+1\right)^{1/2}\left(\sqrt{2}+1\right)^{1/8}e^{\pi/32}\sqrt{1-e^{-\pi/2}},\tag{1'}\\
\Gamma_{e^{-\pi}}\left(\tfrac12\right) &=
a2^{-7/16}\left(\sqrt{2}+1\right)^{1/4}e^{\pi/16}\sqrt{1-e^{-\pi}},\tag{2'}\\
\Gamma_{e^{-2\pi}}\left(\tfrac12\right) &= a2^{-5/8}e^{\pi/8}\sqrt{1-e^{-2\pi}},\tag{3'}\\
\Gamma_{e^{-4\pi}}\left(\tfrac12\right) &= a2^{-5/4}e^{\pi/4}\sqrt{1-e^{-4\pi}},\tag{4'}\\
\Gamma_{e^{-8\pi}}\left(\tfrac12\right) &= a2^{-2}\left(2-\sqrt{2}\right)^{1/2}e^{\pi/2}\sqrt{1-e^{-8\pi}},\tag{5'}\\
\Gamma_{e^{-16\pi}}\left(\tfrac12\right) &= a2^{-2}\left(1-2^{-1/4}\right)e^{\pi}\sqrt{1-e^{-16\pi}}.\tag{6'}
\end{align}
The values of the $\psi$ function that is corresponding to the formulas $(1\text{'})\!-\!(6\text{'})$ are given in Berndt [Part $\text{V}$, p. $325$, Entry $1$.].