Here is a paradox I have some difficulty resolving:
As far as I understand, by one of Gödel's incompleteness theorems, in a first order logic theory with Peano arithmetic, one can find some non-trivial universal closed sentences (starting with a "for all" quantifier, all variables being bound) that can be proven to be unprovable.
Consider such an unprovable universal statement of the form "For all x, P(x)". We proved that there can be no counter example of this statement, exactly because finding such a counter example would disprove the statement hence contradicting Gödel's theorem which said that this statement can not be proven nor disproven. Therefore the given statement must be true.
As one can observe, my previous paragraph is a valid sequence of arguments that explain why my considered universal statement must be true. This previous paragraph is, by the very definition of proof, a proof of the given statement. My conclusion is that either Gödel was wrong, or mathematics are inconsistent :)
What is wrong with my reasoning ? Can you explain why the second paragraph would not be a valid proof? Does it have something to do with metalanguage? Even if metalanguage is mixed with regular language, cannot all the metalanguage used here be encoded in a first order logic with Peano arithmetic, and seen as not part of a stronger theory ?