Suppose $f:(C[0,2],\lVert\rVert_{\infty})\to (M_{2}(\mathbb{R}), \lVert T\rVert_{op})$, where $\lVert T\rVert_{op} = \sup_{\lVert \mathbf{x}\rVert =1}\lVert T\mathbf{x}\rVert$
Let $A=U^{-1}DU$ be some diagonalisable matrix, where $D$ is a diagonal matrix with entries in $[0,2]$ and define $f(g)=g(A)=U^{-1}g(D)U$. (Note: $g(D)$ means apply the function $g$ to each entry of the matrix $D$). Prove that the function $f$ is continuous.
It seems I need need to use the epsilon-delta definition, but I do not know how to simplify the expression $$\lVert f(g)-f(h)\rVert_{op}=\sup_{\lVert \mathbf{x}\rVert=1}\lVert U^{-1}[g(D)-h(D)]U\mathbf{x}\rVert$$ in order to relate it to $\lVert g-h\rVert_{\infty}$. How can I do this?