0

Suppose ${A_n} \subset X, n = 1,2,\ldots$, let $$B = \{\cap_{i=1}^{\infty} A_i^{e_i}: e_i = 1 \text{ or } -1\},$$ where $A_n^1 = A_n$, $A_n^{-1} = A_n^\complement = X \setminus A_n$. How to show that $$\cup_{e_n = 1}(\cap_{i=1}^{\infty} A_i^{e_i}) = A_n?$$

If $n = N$ is finite, for example $N=3$, then $\cup_{e_1 = 1}(\cap_{i=1}^{3} A_i^{e_i}) = A_1$ can be proved by $$(A_1A_2A_3^\complement \cup A_1A_2A_3) \cup (A_1A_2^\complement A_3 \cup A_1A_2^\complement A_3^\complement) = A_1A_2 \cup A_1A_2^\complement = A_1.$$ I don't know whether this way can be applied to prove in $N = \infty$ case since $\cup_{e_n = 1}(\cap_{i=1}^{\infty} A_i^{e_i})$ may have uncountable union, i.e. $\{\cap_{i=1}^{\infty} A_i^{e_i}: e_n = 1\}$ may have uncountable members.

Any hint?

Mars Plastic
  • 4,239

1 Answers1

1

Here is my solution:
Clearly $\cup_{e_n = 1}(\cap_{i=1}^{\infty} A_i^{e_i}) \subset A_n$.$\forall x \in A_n, x \in A_i \text{ or } A_i^\complement \ ,\forall i \neq n$,then there is one(and only one) realization of $\{e_i\}$ with $e_n = 1$ such that $x \in \cup_{e_n = 1}(\cap_{i=1}^{\infty} A_i^{e_i})$, thus $A_n \subset \cup_{e_n = 1}(\cap_{i=1}^{\infty} A_i^{e_i})$