Definition. Let $\bar x \in \mathbb Z_A$. Then
$\langle \bar x \rangle = \{n \bar x: n \in \mathbb Z \}$ is the subgroup of
$\mathbb Z_A$ generated by $\bar x$.
The following statements are true.
If $g \mid A$, then
$\langle \bar g \rangle =
\left\{\bar 0, \ \bar g, \ 2\bar g, \ 3\bar g, \ \dots , \
\left( \dfrac Ag - 1\right) \bar g \right\}$. Hence the order of $g$ is
$\dfrac Ag$.
Let $\bar x \in \mathbb Z_A$ and let
$g = \gcd\{x, A\}$. Then $\langle \bar x \rangle = \langle \bar g \rangle$. Hence
the order of $x$ is $\dfrac{A}{\gcd\{x,A\}}.$
Proof. Let $y \in \langle \bar x \rangle$. Then $y = nx$ for some integer $n$. Since $g \mid x$, then $x = mg$ for some integer $m$. So $y = nx = (nm)g$.
Hence $\bar y \in \langle \bar g \rangle$. So
$\langle \bar x \rangle \subseteq \langle \bar g \rangle$.
Let $\bar y \in \langle \bar g \rangle$. Then $y = mg$ for some integer $m$.
Since $g = \gcd\{x, A\}$, then there exists integers $u$ and $v$ such that
$g = ux + vA$. S0 $y = mg = (mu)x + (mv)A$. It follows that
$y \equiv (mu)x \pmod A$. Hence $y \in \langle \bar x \rangle$ and
$\langle \bar g \rangle \subseteq \langle \bar x \rangle$. $\blacksquare$
The divisors of $24$ are $\{1, 2, 3, 4, 6, 8, 12, 24\}$.
\begin{array}{c|c}
\operatorname{ord} \bar x & x \pmod{24}\\
\hline
1 & 0 \\
2 & 12\\
3 & 8, 16\\
4 & 6, 18\\
6 & 4, 20\\
8 & 3, 9, 15, 21\\
12 & 2, 10, 14, 22\\
24 & 1, 5, 7, 11, 13, 17, 19, 23 \\
\hline
\end{array}
$$\gcd(0,24)=24$$
$$ \operatorname{ord}(\bar 0) = \dfrac{24}{24}=1$$
$$ \langle \bar 0 \rangle = \{ \bar 0 \}$$
$$(\text{$1$ element})$$
$$ \gcd(12,24)=12$$
$$ \operatorname{ord}(\bar{12}) = \dfrac{24}{12}=2 $$
$$ \langle \bar{12} \rangle = \{ \bar 0, \bar{12} \}$$
$$(\text{$2$ elements})$$
$$\gcd(8,24)=\gcd(16,24)=8$$
$$\operatorname{ord}(\bar{8}) =
\operatorname{ord}(\bar{16}) = \dfrac{24}{8}=3$$
$$\langle \bar{8} \rangle =
\langle \bar{16} \rangle = \{ \bar 0, \bar{8}, \bar{16} \}$$
$$(\text{$3$ elements})$$
$$\gcd(6,24)=\gcd(18,24)=6$$
$$\operatorname{ord}(\bar{6}) =
\operatorname{ord}(\bar{18}) = \dfrac{24}{6}=4$$
$$\langle \bar{6} \rangle =
\langle \bar{18} \rangle = \{ \bar 0, \bar{6}, \bar{12}, \bar{18} \}$$
$$(\text{$4$ elements})$$
$$\gcd(4,24)=\gcd(20,24)=4$$
$$\operatorname{ord}(\bar{4}) =
\operatorname{ord}(\bar{20}) = \dfrac{24}{4}=6$$
$$\langle \bar{4} \rangle =
\langle \bar{20} \rangle =
\{ \bar 0, \bar{4}, \bar{8}, \bar{12}, \bar{16}, \bar{20} \}$$
$$(\text{$6$ elements})$$
$$\gcd(3,24)=\gcd(9,24)=\gcd(15,24)=\gcd(21,24)=3$$
$$\operatorname{ord}(\bar{3}) =
\operatorname{ord}(\bar{9}) =
\operatorname{ord}(\bar{15}) =
\operatorname{ord}(\bar{21}) =
\dfrac{24}{3}=8$$
$$\langle \bar{3} \rangle =
\langle \bar{9} \rangle =
\langle \bar{15} \rangle =
\langle \bar{21} \rangle =
\{ \bar 0, \bar{3}, \bar{6}, \bar{9}, \bar{12}, \bar{15},
\bar{18}, \bar{21} \}$$
$$(\text{$8$ elements})$$
$$\gcd(2,24)=\gcd(10,24)=\gcd(14,24)=\gcd(22,24)=2$$
$$\operatorname{ord}(\bar{2}) =
\operatorname{ord}(\bar{10}) =
\operatorname{ord}(\bar{14}) =
\operatorname{ord}(\bar{22}) =
\dfrac{24}{2}=12$$
$$\langle \bar{2} \rangle =
\langle \bar{10} \rangle =
\langle \bar{14} \rangle =
\langle \bar{22} \rangle =
\{ \bar 0, \bar{2}, \bar{4}, \bar{6}, \bar{8}, \bar{10},
\bar{12}, \bar{14}, \bar{16}, \bar{18}, \bar{20}, \bar{22} \}$$
$$(\text{$12$ elements})$$
$$\gcd(1,24)=\gcd(5,24)=\gcd(7,24)=
\gcd(11,24)=\gcd(13,24)=\gcd(17,24)=\gcd(19,24)=1$$
$$\operatorname{ord}(\bar{1}) =
\operatorname{ord}(\bar{5}) =
\operatorname{ord}(\bar{7}) =
\operatorname{ord}(\bar{11}) =
\operatorname{ord}(\bar{13}) =
\operatorname{ord}(\bar{17}) =
\operatorname{ord}(\bar{19}) =
\operatorname{ord}(\bar{23}) =
\dfrac{24}{1}=24$$
$$\langle \bar{1} \rangle =
\langle \bar{5} \rangle =
\langle \bar{7} \rangle =
\langle \bar{11} \rangle =
\langle \bar{13} \rangle =
\langle \bar{17} \rangle =
\langle \bar{19} \rangle =
\langle \bar{23} \rangle =$$
$$\{ \bar 0, \bar 1 \bar{2}, \bar 3, \bar{4}, \bar 5,
\bar{6}, \bar 7, \bar{8}, \bar 9, \bar{10},
\bar{11}, \bar{12}, \bar{13}, \bar{14}, \bar{15},
\bar{16}, \bar{17}, \bar{18}, \bar{19}, \bar{20},
\bar{21}, \bar{22}, \bar{23} \}$$
$$(\text{$24$ elements})$$