First, a bit of notation. Let $x(t) = \cos(t)$ and $y(t) = \sin(t)$ . Let $x$ and $y$ be abbreviations for $x(t)$ and $y(t)$ .
Using de Moivre's formula, proving that $ \sin(3t) = 3\sin(t) - 4\sin^3(t) $ is straightforward. I'm curious whether this formula has a geometric proof or one that doesn't use complex numbers and preferably not calculus.
For comparison, the double angle formula has a wonderful geometric proof here.
Here's the straightforward proof:
$$\sin(3t)$$
$$\Im(\exp(i\times 3t))$$
$$\Im(\exp(it)^3) $$ $$\Im((x+iy)^3) $$ $$\Im(x^3 + 3x^2yi + 3xy^2i^2 + y^3i^3) $$ $$\Im(x^3 + 3x^2yi - 3xy^2 - y^3i) $$ $$3x^2y - y^3 $$ $$3 {\times} (1-y^2) {\times} y - y^3 $$ $$3y - 3y^3 - y^3 $$ $$3y - 4y^3 $$
And thus
$$ \sin(3t) = 3\sin(t) - 4\sin^3(t) $$