Inspired by these two questions asking about the case n = 3 and n=4, I was wondering what is $$S =\sum_{k=1}^\infty\frac{(-1)^{k-1}}{k^n 2^k {2k \choose k}}$$ for positive integer $n \ge 3$.
For $n = 3$, the sum is $\frac{1}{4}\zeta (3)-\frac{1}{6}\ln^3(2) = \frac{1}{2}\operatorname{Li}_3\left(\frac{1}{2}\right)+\frac{1}{2}\ln(2)\operatorname{Li}_2\left(\frac{1}{2}\right)-\frac{3}{16}\zeta(3)$.
For $n = 4$, the sum is $4\operatorname{Li}_4\left(\frac12\right)-\frac72\zeta(4)+\frac{13}4\ln2\zeta(3)-\ln^22\zeta(2)+\frac5{24}\ln^42$.
Using similar work as from the two linked questions, the sum can be re-expressed as the integral $$\frac{2\cdot(-1)^{n-1}}{(n-3)!}\int_0^1\text{arcsinh}^2\left(\sqrt{\frac{x}{8}}\right)\frac{\ln^{n-3}(x)}{x}dx$$
Setting $u = \text{arcsinh}\left(\sqrt{\frac{x}{8}}\right)$, we get $$S = \frac{4\cdot(-1)^{n-1}}{(n-3)!}\underbrace{\int_0^{\frac{\ln(2)}{2}} u^2\ln^{n-3}(8\sinh^2(u))\coth(u) du}_{\large {I}}$$
$$I = \int_0^{\frac{\ln(2)}{2}}u^2\coth(u)\sum_{k=0}^{n-3}\left({n-3\choose k}\ln^{n-3-k}(8)(2\ln(\sinh(u)))^{k}\right) du$$ $$I = \sum_{k=0}^{n-3}{n-3\choose k}\ln^{n-3-k}(8)2^{k}\underbrace{\int_0^{\frac{\ln(2)}{2}}u^2\coth(u)\ln^{k}(\sinh(u))du}_{\large J}$$
Making the substitution $v = \sinh(u)$ and simplifying, we get $$J = \int_0^{\frac{1}{2\sqrt{2}}}\frac{\text{arcsinh}^2(v)\ln^k(v)}{v}dv$$
Although this may or may not help, making the substitution $w = \ln(v)$, we get $$J = \int_{-\infty}^{-\ln(2\sqrt{2})}w^k\text{arcsinh}^2(e^w)dw$$
From here, I don't know what to do to find $J$.
How can I, either through this process or a completely different one, find:
$1.$ The value of $S$ for integer $n \ge 3$?
$2.$ The value of $J$ for integer $k \ge 0$?