$A$ is a $n \times n$ real matrix.
$A_{ij} = \begin{cases} \phantom{-}b_{i}c_{j} & \text{if } i = j \\ -b_{i}c_{j} & \text{if } i \ne j \end{cases}$
How to simplify $\det(A)$?
Update:
Can I simplify the determinant with elementary row and column operations as described at http://www.maths.nuigalway.ie/~rquinlan/MA203/section2-5.pdf?
- Divide each row by $b_{i}$ (elementary row operation)
- Divide each column by $c_{j}$ (elementary column operation)
$\det(A) = \left(\prod_{i=1}^{n} b_{i} \right) \left(\prod_{j=1}^{n} c_{j} \right) \det(S)$
where $S_{ij} = \begin{cases} + 1 & \text{if } i = j \\ -1 & \text{if } i \ne j \end{cases}$
So, the problem reduces to finding $\det(S)$.