Here is an adaptation of the answer you linked: Suppose $f$ is continuous and consider any norm $\Vert\cdot\Vert$ on $\mathbb{R}^n$ and the associated matricial/operator norm $\Vert\cdot\Vert$. Then $f$ is differentiable at $x$ iff
$$\exists M>0:\forall\epsilon>0:\exists\delta>0:\exists A\in\mathbb{Q}_{n\times n}(\Vert A\Vert<M):\forall h(\Vert h\Vert<\delta):\Vert f(x+h)-f(x)-Ah\Vert\leq\epsilon\Vert h\Vert,$$
where we take all numbers and vectors rational, and $\mathbb{Q}_{n\times n}$ is the set of $n\times n$ rational matrices.
Here's the idea: If $f$ is differentiable at $x$, then take rational $M>\Vert df(x)\Vert+1$. Given $\epsilon>0$, let $A\in\mathbb{Q}_{n\times n}$ such that $\Vert df(x)-A\Vert\leq\epsilon/2$ (matricial norm). Since $\lim\frac{f(x+h)-f(x)-df(x)h}{\Vert h\Vert}=0$ there exists $\delta>0$ such that if $\Vert h\Vert<\delta$ then $\Vert f(x+h)-f(x)-df(x)h\Vert\leq\epsilon\Vert h\Vert/2$, so
$$\Vert f(x+h)-f(x)-Ah\Vert\leq \epsilon\Vert h\Vert/2+\Vert Ah-df(x)h\Vert\leq\epsilon\Vert h\Vert.$$
In the other direction, suppose $x$ is such that the expression above is satisfied. Let $\epsilon_n\to 0^+$ and take $\delta_n$ and $A_n$ satisfy the expression above, with respect to $\epsilon_n$. Since $f$ is continuous, the inequality holds for all $h$ with $\Vert h\Vert\leq\delta$ (possibly non-rational). Since $\Vert A_n\Vert<M$ for all $n$ then we can pass to a subsequence and assume that the matrices $A_n$ converge to some matrix $A$.
If $\Vert h\Vert<\delta_n$, then
\begin{align*}
\Vert f(x+h)-f(x)-Ah\Vert&\leq\Vert f(x+h)-f(x)-A_nh\Vert+\Vert A_nh-Ah\Vert\\
&\leq(\epsilon_n+\Vert A_n-A\Vert)\Vert h\Vert.
\end{align*}
Since $A_n\to A$ and $\epsilon_n\to 0$ then $f$ is differentiable at $x$ with $df(x)=A$.
Addendum: I just noticed we can ommit the "$\exists M>0$" part: Let $B$ be the matrix we obtain for $\epsilon=1$. Then for any $\epsilon$, take the matrix $A_\epsilon$ associated to it. For $\epsilon<1$ and every sufficiently small $h$ we have $\Vert Bh- A_\epsilon h\Vert\leq (\epsilon+1)\Vert h\Vert\leq 2\Vert h\Vert$, so $\Vert A_\epsilon\Vert\leq\Vert B\Vert+2$. This is enough for the arguments above.