I am trying to find a closed form for this infinite series: $$ S=\sum_{n=1}^{\infty}\frac{4^nH_n}{n^2{2n\choose n}}$$ Whith $H_n=\sum\limits_{k=1}^{n}\frac{1}{k}$ the harmonic numbers.
I found this integral representation of S:
$$S=2\int_{0}^{1}\frac{x}{1-x^2}\left(\frac{\pi^2}{2}-2\arcsin^2(x)\right)dx$$
Sketch of a proof:
Recall the integral representation of the harmonic numbers: $H_n=\displaystyle\int_{0}^{1}\frac{1-x^n}{1-x}dx$
By plugging it into the definition of S and interchanging the order of summation between $\displaystyle\sum$ and $\displaystyle\int$ (justified by the uniform convergence of the function series $\displaystyle\sum\left(x\to\frac{4^n}{n^2{2n\choose n}}\frac{1-x^n}{1-x}\right)$, because $\forall x\in[0,1],\frac{1-x^n}{1-x}<n$), we get: $$S=\int_{0}^{1}\frac{1}{1-x}\sum\limits_{n=1}^{\infty}\frac{4^n(1-x^n)}{n^2{2n\choose n}}dx$$ $$=\int_{0}^{1}\frac{1}{1-x}\left(\sum\limits_{n=1}^{\infty}\frac{4^n}{n^2{2n\choose n}}-\sum\limits_{n=1}^{\infty}\frac{(4x)^n}{n^2{2n\choose n}}\right)dx$$ $$=\int_{0}^{1}\frac{1}{1-x}\left(\frac{\pi^2}{2}-\sum\limits_{n=1}^{\infty}\frac{(4x)^n}{n^2{2n\choose n}}\right)dx$$ Using the result $\displaystyle\sum\limits_{n=1}^{\infty}\frac{4^n}{n^2{2n\choose n}}=\frac{\pi^2}{2}$.
At that point, we will rely on the taylor series expansion of $\arcsin^2$: $$\arcsin^2(x)=\frac{1}{2}\sum\limits_{n=1}^{\infty}\frac{4^n}{n^2{2n\choose n}}x^{2n}, |x|<1$$ Out of which we get $\displaystyle\sum\limits_{n=1}^{\infty}\frac{(4x)^n}{n^2{2n\choose n}}=2\arcsin^2\left(\sqrt{x}\right)$
So,
$$S=\int_{0}^{1}\frac{1}{1-x}\left(\frac{\pi^2}{2}-2\arcsin^2\left(\sqrt{x}\right)\right)dx$$
Which, through the substitution $u=\sqrt{x}$, gives the integral representation above.
But beyond that, nothing so far. I tried to use the integral representation of $\frac{H_n}{n}$ to switch the order of summation, but it didn't lead anywhere. Any suggestion?