Positive real vectors $x,y,x',y'\in\mathbb R^2_+$; $f,g$ are multivariate functions: $f,g:\mathbb R^2\to\mathbb R^2$. Matrix $A\in\mathbb R^{2\times2}$.
Given that $y=Ax$, $y'=Ax'$, $A^Tg(y)=f(x)$, and $(x-x')\cdot(f(x)-f(x'))\leq0$
Prove that $(y-y')\cdot(g(y)-g(y'))\leq 0$.
The first step is obviously $(x-x')(f(x)-f(x'))\leq0$ implies $(x-x')\cdot A^T(g(y)-g(y'))\leq0.$
If we furhter assume the invertability of $A$, then$$A^{-1}(y-y')\cdot A^T(g(y)-g(y'))\leq0.$$
It seems that it cannot be further simplified.....