Consider a Riemannian manifold of dimension $n\geq3$. Consider the conformal Laplacian \begin{equation*} P_g=\Delta_g+\frac{n-2}{4(n-1)}R_g, \end{equation*} where $R_g$ is the scalar curvature associated to the metric $g$.
I would like to show that $P_g$ is a conformally covariant operator in the sense that under the conformal change $\tilde{g}=e^{2f}g$, the following transformation law is satisfied: \begin{align*} P_{\tilde{g}}&=e^{-(\frac{n}{2}+1)f}P_g \,e^{(\frac{n}{2}-1)f}\\ &= e^{-(\frac{n}{2}+1)f}\Delta_g \,e^{(\frac{n}{2}-1)f}+\frac{n-2}{4(n-1)}R_g\,e^{-2f} \tag{1} \end{align*} I know that under such a conformal change, the Laplace-Beltrami operator transforms like \begin{equation*} \Delta_{\tilde{g}}=e^{-2f}\Delta_g-(n-2)e^{-2f}g^{ij}\frac{\partial f}{\partial x_j}\frac{\partial}{\partial x_i}. \end{equation*} For the scalar curvature, one can make the substitution $e^{2f}=\varphi^{4/(n-2)}$ (where $\varphi$ is positive) to get \begin{equation*} R_{\tilde{g}}=\varphi^{-(n+2)/(n-2)}\bigg(4\frac{n-1}{n-2}\Delta_g \varphi + R_g\varphi\bigg) \end{equation*} which is really just \begin{equation*} R_{\tilde{g}}=4\frac{n-1}{n-2}e^{-(\frac{n}{2}+1)f}\Delta_g \, e^{(\frac{n}{2}-1)f}+R_g e^{-2f}. \end{equation*} So, I get \begin{equation*} \tag{2} P_{\tilde{g}}= e^{-2f}\Delta_g-(n-2)e^{-2f}g^{ij}\frac{\partial f}{\partial x_j}\frac{\partial}{\partial x_i} + e^{-(\frac{n}{2}+1)f}\Delta_g \, e^{(\frac{n}{2}-1)f}+\frac{n-2}{4(n-1)}R_g\, e^{-2f}. \end{equation*}
The problem is that I do not see how (1) is the same as (2). Have I made a mistake somewhere? Or do the first two terms in (2) somehow cancel each other out?
Any help would be greatly appreciated!