We can avoid complicated integrations, at the price of doing a little complex analysis.
Consider
$$F(z)=\int^\infty_0\frac{\ln(\sqrt t-z)}{t^2+1}dt\qquad z\in\mathbb C\setminus\mathbb R^+$$
where the principal logarithm is used.
One can show without difficulties that $F$ is holomorphic on its domain.
1. Proof of $F(0)=0$
$$\begin{align}
F(0)
&=\frac12\int^\infty_0\frac{\ln t}{t^2+1}dt \\
&=\frac12\int^1_0\frac{\ln t}{t^2+1}dt+\frac12\int^\infty_1\frac{\ln t}{t^2+1}dt \\
&=\frac12\int^1_0\frac{\ln t}{t^2+1}dt+\frac12\int^1_0\frac{-\ln t}{t^2+1}dt \qquad (1)\\
&=0
\end{align}
$$
$(1)$: the substitution $t\mapsto\frac1t$ is applied on the second integral.
2. An identity for $\text{Im } F$
By the substitution $t\mapsto\frac1t$,
$$\begin{align}
F(z)
&=\int^\infty_0\frac{\ln\left(\frac1{\sqrt t}-z\right)}{t^2+1}dt \\
&=\int^\infty_0\frac{\ln\left[\frac{-z}{\sqrt t}(\sqrt t-\frac1z)\right]}{t^2+1}dt \\
&=\int^\infty_0\frac{\ln(-z)}{t^2+1}dt-\frac12\int^\infty_0\frac{\ln(t)}{t^2+1}dt+F\left(\frac1z\right) \\
&=\frac{\pi}{2}\ln(-z)+F\left(\frac1z\right)
\end{align}
$$
If $|z|=1$, $\frac1z=\bar z$. Also, from the integral representation of $F$, $F(\bar z)=\overline{F(z)}$.
Hence, for $z\ne 1$ on the unit circle,
$$F(z)=\frac{\pi}{2}\ln\left|-z\right|+\frac{\pi}{2}\arg(-z)+\overline{F(z)}=\frac{\pi}{2}\arg(-z)+\overline{F(z)}$$
$$F(z)-\overline{F(z)}=\frac{\pi}{2}\arg(-z)\implies \text{Im }F(z)=\frac{\pi}{4}\arg(-z)$$
3. Proof of $F(z)=\frac{\pi}{4}\ln(-z)$
The result $\text{Im }F(z)=\frac{\pi}{4}\arg(-z)$ is already a big hint at $F(z)=\frac{\pi}{4}\ln(-z)$. Indeed, $\text{Im}\big(F(z)-\frac{\pi}{4}\ln(-z)\big)=0$ in $\mathbb C\setminus\mathbb R^+$, thus the desired equality follows by Identity Theorem.
4. Evaluation of the integral
By noticing $$1+x-\sqrt{2x}=(\sqrt x-e^{i\pi/4})(\sqrt x-e^{-i\pi/4})$$
we have
$$\begin{align}
J&=\int_0^\infty \frac{\ln\left(1+x-\sqrt{2x}\right)}{1+x^2}\,dx \\
&=F(e^{i\pi/4})+F(e^{-i\pi/4}) \\
&=\frac{\pi}{4}\left[\ln(-e^{i\pi/4})+\ln(-e^{-i\pi/4})\right] \\
&=\frac{\pi}{4}\left[\ln(e^{-3\pi i/4})+\ln(e^{3\pi i/4})\right] \\
&=\frac{\pi}{4}\left(-\frac{3\pi i}{4}+\frac{3\pi i}{4}\right) \\
&\color{red}{=0}\qquad\blacksquare
\end{align}
$$