$$11 | 10^{2n+1}+1\;\;\; \forall n\in \mathbb{N}\cup\{0\} \tag{$\star$}$$
My proof of $(\star)$ is as follows:
\begin{align} 10^{2n+1}+1 &= 10\cdot10^{2n}+1 \\ &= (11-1)\cdot10^{2n}+1 \\ &= 11\cdot10^{2n}-10^{2n}+1 \\ &= 11\cdot10^{2n}-\left(10^{2n}-1\right) \\ &= 11\cdot10^{2n}-\left(100^{n}-1\right) \\ &= 11\cdot10^{2n}-\left((99+1)^{n}-1\right) \\ &= 11\cdot10^{2n}-\left(1+\binom{n}{1}99+\binom{n}{2}99^2+\cdots+\binom{n}{n-1}99^{n-1}+99^n-1\right) \\ &= 11\cdot10^{2n}-\underbrace{99}_{11\cdot9} \left(\binom{n}{1}+\binom{n}{2}99+\cdots+\binom{n}{n-1}99^{n-2}+99^{n-1}\right) \\ &= 11\left(10^{2n}-9 \left(\binom{n}{1}+\binom{n}{2}99+\cdots+\binom{n}{n-1}99^{n-2}+99^{n-1}\right)\right) \end{align}
Is there an easier way to prove $(\star)$? The expansion of $(99+1)^n$ seems unnecessarily complicated, but I wasn't sure how else to go from there. Easier proofs are welcome!