Here is an outline of a proof that if $m|n$ then $a_m|a_n;$ from there, it is easy to argue your claim.
Let $n=km.$ It suffices to show $a_m|a_{km}$ for $k=2$ and $k$ odd.
As alluded in comments, $a_n=\dfrac{\alpha^n-\dfrac1{(-\alpha)^n}}{2\sqrt2}$, where $\alpha=1+\sqrt2$.
Define another sequence $b_n$ the same way as $a_n$ except $b_2=3$. Then $b_n=\dfrac{\alpha^n+\dfrac1{(-\alpha)^n}}{2}.$
It is easy to show that $a_{2m}=2a_mb_m$; thus $a_m|a_{2m},$ and we are done with the case $\dfrac nm=2$.
To prove $a_m|a_{(2l-1)m},$ use strong induction on $l$.
The base case ($l=1$) is trivial.
Now assume $a_m|a_{(2i-1)m}$ for $i=1$ to $l.$ To show $a_m|a_{(2l+1)m}$,
note $a_m^{2l+1}=\left(\dfrac{\alpha^m+\dfrac{(-1)^{m+1}}{\alpha^m}}{2\sqrt2}\right)^{2l+1}=\dfrac{\left(\alpha^m+\dfrac{(-1)^{m+1}}{\alpha^m}\right)^{2l+1}}{2^{3l}2\sqrt2}.$
Therefore, using the binomial expansion, $2^{3l}a_m^{2l+1}=\dfrac{\left(\alpha^{m(2l+1)}-\dfrac1{(-\alpha)^{m(2l+1)}}\right)}{2\sqrt2}+...$
$=a_{m(2l+1)}+ $ sum of terms that are binomial coefficients times $a_{(2i-1)m}, 1\le i\le l.$
The left side of this equation $(2^{3l}a_m^{2l+1})$ is a multiple of $a_m$,
and the sum of terms is a multiple of $a_m$ (due to the induction hypothesis),
so $a_{m(2l+1)}$ is a multiple of $a_m$.