Let $$ \left\{ \begin{array}{c} \sin x = \frac{4}{5} \\ \cos x = \frac{3}{5} \end{array} \right. $$
Find all of the possible values for $x$.
My try: By dividing the equations we obtain $\tan x = \frac{4}{3}$ and then $$x = \arctan\frac{4}{3} + k\pi$$ But WolframAlpha gives $$x = 2k\pi + 2\arctan\frac{1}{2}$$
Using $\arctan(x)+\arctan(y) = \arctan\left(\frac{x+y}{1-xy}\right)$, we get $$2\arctan\frac{1}{2} = \arctan\frac{4}{3}$$ but the answers are different still.
Why does this happen? And what is the correct answer?