I am trying to understand why equivalence relations are defined using the three properties of reflexivity, symmetry, and transitivity.
Using an example set of $S = \{1,2,3,4,5,6,7,8,9\}$
It seems to me like a good first intuition is the following:
Reflexive
An equivalence relation's reflexive property basically ensures that every element in the set under examination can be partitioned (i.e. occupy its own equivalence class).
For example, if we had $R_1$ be a relation on $S$ defined as $x-y$ is divisible by $10$, then, because $(1,1)$ , $(2,2)$ , $(3,3)$ , $etc$ are order pairs that will all satisfy $R_1$, we will end up with 10 different equivalence classes ($e.g. [1],[2],[3], etc)$. Therefore, all elements are partitioned...which makes sense because each of these elements $mod(10)$ have a unique remainder...namely $1$, $2$, $3$, $etc$
Transitive
An equivalence relation's transitive property basically allows you to "unidirectionally" (my meaning will be understood shortly) link all elements belonging to the same equivalence class.
For example, if we had $R_2$ be a relation on $S$ defined as $x-y$ is divisible by $2$, then the following ordered pairs (non-exhaustive) are certainly in the set: $(2,4)$, $(4,6)$, $(6,8)$. Pretend I do not know any other ordered pairs.
Now, if I choose as my representative element $[2]$, I can build my equivalence class by starting with $2\ R_2\ n$. Well, $(2,4)$ is in $R_2$ therefore, $4$ belongs to the same equivalence class as $2$. What works with $4\ R_2\ n$? Well $(4,6)$ is in $R_2$ and therefore $6$ is in the same equivalence class as $2$ and $4$.
However, let's say that I start with $[8]$ instead of $[2]$. Which of the elements in set $S$ are in the same equivalence class? Namely, for which value of $n$ is $8\ R_2\ n$ true? Well, I know I have the ordered pair $(6,8)$...but that is not the same form as $8\ R_2\ 6$. If only I knew that $(8,6)$ was also in the set describing $R_2$...and this is where symmetry comes into play.
Symmetric
An equivalence relation's symmetry property, in conjunction with the transitive property, allows you to bidirectionally link all elements belonging to an equivalence class (regardless of which 'starting element' you choose to represent your equivalence class).
For example, incorporating the symmetry property with the above transitivity example, I now know that if $(2,4)$, $(4,6)$, and $(6,8)$ are in my $R_2$ set, then I also know that $(4,2)$,$(6,4)$, and $(8,6)$ are in my $R_2$ set. Consequently, if someone asks me what are the other elements that belong to $[8]$, without hesitation I can say $2$,$4$, and $6$.
Are these the correct ways (at a very basic level) of intuitively understanding the motivation behind using these 3 properties to define equivalence relations?