Theorem: Given that
$$
u^2+v^2=2\tag1
$$
we have
$$
u\log(u)+v\log(v)\ge0\tag2
$$
Proof: We will show that the only critical point is when $u=v$. Assume that $u\ne v$.
By the symmetry of $(1)$ and $(2)$, we can take $u\lt v$. Constraint $(1)$ implies
$$
\frac{\mathrm{d}v}{\mathrm{d}u}=-\frac uv\tag3
$$
At any critical point, we must have
$$
\begin{align}
0
&=\frac{\mathrm{d}}{\mathrm{d}u}(u\log(u)+v\log(v))\\[3pt]
&=u\left(\frac{1+\log(u)}u-\frac{1+\log(v)}v\right)\\
&=eu\left(\frac{\log(eu)}{eu}-\frac{\log(ev)}{ev}\right)\tag4
\end{align}
$$
Since $u\lt v$, the solution to $(4)$ can be parametrized as
$$
\begin{align}
eu&=\left(1+\frac1w\right)^w\\
ev&=\left(1+\frac1w\right)^{w+1}
\end{align}\tag5
$$
Thus, $(1)$ says that
$$
\begin{align}
2e^2
&=(eu)^2+(ev)^2\\[3pt]
&=\left(1+\frac1w\right)^{2w}+\left(1+\frac1w\right)^{2w+2}\\
&=\color{#C00}{\left(\frac{w}{w+1}+\frac{w+1}{w}\right)}\color{#090}{\left(1+\frac1w\right)^{2w+1}}\\[6pt]
&\gt\color{#C00}{2}\color{#090}{e^2}\tag6
\end{align}
$$
for all finite values of $w$ because
$$
\begin{align}
\frac{w}{w+1}+\frac{w+1}{w}
&=2+\left(\sqrt{\frac{w}{w+1}}-\sqrt{\frac{w+1}{w}}\right)^2\\
&\gt2\tag7
\end{align}
$$
and Cauchy-Schwarz says
$$
\begin{align}
\left(\int_w^{w+1}x\,\mathrm{d}x\right)\left(\int_w^{w+1}\frac1x\,\mathrm{d}x\right)&\ge\left(\int_w^{w+1}1\,\mathrm{d}x\right)^2\\
\left(w+\frac12\right)\log\left(1+\frac1w\right)&\ge1\tag8
\end{align}
$$
which implies
$$
\left(1+\frac1w\right)^{2w+1}\ge e^2\tag9
$$
$(6)$ is a contradiction, which implies that the only critical point is $u=v=1$, where $u\log(u)+v\log(v)=0$. Since both $\left(0,\sqrt2\right)$ and $\left(\sqrt2,0\right)$ give $u\log(u)+v\log(v)=\frac{\log(2)}{\sqrt2}$, we have shown $(2)$.
$\large\square$
Letting $u=\sqrt{1-x}$ and $v=\sqrt{1+x}$, $(2)$ becomes
$$
\sqrt{1-x}\,\log(1-x)+\sqrt{1+x}\,\log(1+x)\ge0\tag{10}
$$
Set $x=\frac1{11}$ and we get
$$
\sqrt{\frac{10}{11}}\log\left(\frac{10}{11}\right)+\sqrt{\frac{12}{11}}\log\left(\frac{12}{11}\right)\ge0\tag{11}
$$
which gives
$$
\left(\frac{12}{11}\right)^{\sqrt6}\ge\left(\frac{11}{10}\right)^{\sqrt5}\tag{12}
$$