My ultimate goal is to find a way to compute the determinant of the following block symmetric matrix:
$$ \underset{np\times np}H=\begin{bmatrix} \frac{1}{n}A+\frac{2(n-1)}{n^3s^2}I_p & -\frac{2}{n^3s^2}I_p & \dots & -\frac{2}{n^3s^2}I_p \\ -\frac{2}{n^3s^2}I_p & \frac{1}{n}A+\frac{2(n-1)}{n^3s^2}I_p & \dots & -\frac{2}{n^3s^2}I_p \\ \dots & \dots & \dots & \dots\\ -\frac{2}{n^3s^2}I_p & -\frac{2}{n^3s^2}I_p & \cdots & \frac{1}{n}A+\frac{2(n-1)}{n^3s^2}I_p\\ \end{bmatrix}, $$
where $A$ is a $p\times p$ symmetric matrix and $n,s\in \mathbb{R}$. As a first step, I would like to express this matrix with a unique expression envolving Kronecker product. Any idea of how to achieve such expression? Or any suggestion to compute the determinant of $H$ in another way?