8

While working on the integral posted here, through a large amount of skulduggery, I managed to arrive at the following intriguing sum

$$\begin{align}\sum_{n = 1}^\infty \sum_{k = 1}^n \frac{1}{n^4 k 2^k} &= 2\operatorname{Li}_5 \left (\frac{1}{2} \right ) + \ln 2 \operatorname{Li}_4 \left (\frac{1}{2} \right ) + \frac{7}{16} \zeta (3) \ln^2 2 \\ &- \frac{\pi^2}{36} \ln^3 2 + \frac{\pi^4}{90} \ln 2 - \frac{7}{96} \pi^2 \zeta (3) - \frac{27}{32} \zeta (5) + \frac{1}{30} \ln^5 2 \end{align}$$

Of course I do not know how to arrive at this result in a direct manner coming from it at the sum on the left.

So my question is, does anyone have any suggestions on how one would approach the evaluation of the sum on the left?

Blue
  • 75,673
omegadot
  • 11,736
  • +1 That's beautiful – Klangen Jul 18 '19 at 11:58
  • 1
    I'll also give a +1 for an interesting result, but @Klangen, you and I have far different concepts of beauty! – Paul Sinclair Jul 18 '19 at 21:54
  • 1
    @PaulSinclair It contains the constants $\zeta(3)$ and $\zeta(5)$, both highly ''mysterious'' quantities at the moment, the logarithmic integral and $\pi$. For me this has the same 'beauty' value as $e^{\pi i} + 1 = 0$ :) – Klangen Jul 19 '19 at 07:59
  • 1
    Using the integral representation Marco presented in his answer, $\int_{0}^{1}\frac{1}{2-x}\left(\zeta\left(4\right)-\mathrm{Li}_{4}\left(\frac{x}{2}\right)\right)dx$, substitute $x\to 1-x$, we only need to evaluate $\int_0^1 \frac{\mathrm{Li}_4(\frac{1-x}{2})}{1+x} dx$, which is the integral PLI(000;43;2) recorded in the article here. Hence your claim is proved. – Infiniticism May 13 '20 at 03:50

1 Answers1

2

We have $$S=\sum_{n\geq1}\frac{1}{n^{4}}\sum_{k=1}^{n}\frac{1}{k2^{k}}=\sum_{n\geq1}\frac{1}{n^{4}}\int_{0}^{1}\frac{1-x^{n}2^{-n}}{2-x}dx$$ $$=\int_{0}^{1}\frac{1}{2-x}\left(\zeta\left(4\right)-\mathrm{Li}_{4}\left(\frac{x}{2}\right)\right)dx.$$

Now, since we can split the integral, we obtain $$ S=\zeta\left(4\right)\log\left(2\right)-\int_{0}^{1}\frac{\mathrm{Li}_{4}\left(\frac{x}{2}\right)}{2-x}dx$$ $$=\zeta\left(4\right)\log\left(2\right)-\sum_{k\geq0}\int_{0}^{1/2}x^{k}\mathrm{Li}_{4}\left(x\right)dx$$ $$=\zeta\left(4\right)\log\left(2\right)-\frac{1}{2}\sum_{k\geq0}\frac{1}{2^{k}}\sum_{m\geq1}\frac{1}{m^{4}\left(k+m+1\right)2^{m}}\tag{1}$$ and now we can expand the inner series in $(1)$ via partial fractions decomposition and evaluate every single term.

Marco Cantarini
  • 33,062
  • 2
  • 47
  • 93