0

What is the cardinality of $\Bbb Q ^4$?

I understand that $\vert \Bbb Q \vert=\aleph _0$, and $\vert \Bbb Q ^4 \vert$ supposed to be $\aleph _0$, is there any formal proof to this?

YuiTo Cheng
  • 4,705
WaterBro
  • 221

2 Answers2

0

Well, suppose the set $A$ is denumerable, i.e., $A=\{a_0,a_1,a_2,\ldots\}$. Then the set $A^2$ is denumerable. This can be shown by writing the elements of $A^2$ as an infinite matrix $$\begin{array}{cccc} (a_0,a_0) & (a_0,a_1) & (a_0,a_2) & \ldots\\ (a_1,a_0) & (a_1,a_1) & (a_1,a_2) & \ldots\\ (a_2,a_0) & (a_2,a_1) & (a_2,a_2) & \ldots\\ \vdots & \vdots & \vdots \end{array}$$ These elements can be enumerated by walking through the array in zig-zag just as in Cantor's first diagonalization procedure. Now $A^2$ is denumerable and so $A^4=(A^2)^2$ is denumerable.

Wuestenfux
  • 20,964
0

Just in the same way you can prove $\mathbb{Q}$ is countable (Cantor's diagonal argument), you can also prove $\mathbb{N}^2$. Now. If $|\mathbb{N}| = |\mathbb{N}^2|$, $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}^2 \times \mathbb{N}^2| = |\mathbb{N}^4| = |\mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \mathbb{N}|$

But $|\mathbb{N}| = |\mathbb{Q}|$, therefore $|\mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \mathbb{N}| = |\mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q}|$

David
  • 3,029