2

I was wondering what is the fastest way to solve $X^2-1801Y^2=1$ and how many iterations would it take by such method? The solution is humongous (the $Y$ solution apparently has 56 digits) and I am dying with the continued fraction method. Can someone please help?

Thanks

RTn
  • 299
  • 2
    Why not implement the continued fraction method as a script? – quasi Jul 14 '19 at 23:44
  • @quasi Well, I do have a script.. Just that I want to find out if there is a more efficient way and so far I know of nothing other than the continued fraction which takes forever. – RTn Jul 14 '19 at 23:51
  • Given that the solution you are looking for has $56$ digits, I would expect it to be some work to find it, even write it down. So how much faster do you expect to find it than repeating the continued fraction method a 'few' times? – Servaes Jul 15 '19 at 00:14
  • @Servaes the usual problem is that people attempt continued fractions using reals (floats) with large precision, which may well refuse to give any correct answer – Will Jagy Jul 15 '19 at 00:16

3 Answers3

3

This is a variant to continued fractions due to Gauss and Lagrange. Since 1801 is a prime 1 mod 4, there is a solution to $u^2 - 1801 v^2 = -1.$ Check form number 63 in the output. Then $$ (u^2 + 1801 v^2)^2 - 1801 (2uv)^2 = 1 $$

Anyway, only integer operations, no approximations used... I added commands to print the time at beginning and end of the computation. This takes under one second.

jagy@phobeusjunior:~/old drive/home/jagy/Cplusplus$ ./Pell 1801
Sun Jul 14 17:06:47 PDT 2019


0  form   1 84 -37   delta  -2
1  form   -37 64 21   delta  3
2  form   21 62 -40   delta  -1
3  form   -40 18 43   delta  1
4  form   43 68 -15   delta  -5
5  form   -15 82 8   delta  10
6  form   8 78 -35   delta  -2
7  form   -35 62 24   delta  3
8  form   24 82 -5   delta  -16
9  form   -5 78 56   delta  1
10  form   56 34 -27   delta  -2
11  form   -27 74 16   delta  4
12  form   16 54 -67   delta  -1
13  form   -67 80 3   delta  27
14  form   3 82 -40   delta  -2
15  form   -40 78 7   delta  11
16  form   7 76 -51   delta  -1
17  form   -51 26 32   delta  1
18  form   32 38 -45   delta  -1
19  form   -45 52 25   delta  2
20  form   25 48 -49   delta  -1
21  form   -49 50 24   delta  2
22  form   24 46 -53   delta  -1
23  form   -53 60 17   delta  4
24  form   17 76 -21   delta  -3
25  form   -21 50 56   delta  1
26  form   56 62 -15   delta  -4
27  form   -15 58 64   delta  1
28  form   64 70 -9   delta  -8
29  form   -9 74 48   delta  1
30  form   48 22 -35   delta  -1
31  form   -35 48 35   delta  1
32  form   35 22 -48   delta  -1
33  form   -48 74 9   delta  8
34  form   9 70 -64   delta  -1
35  form   -64 58 15   delta  4
36  form   15 62 -56   delta  -1
37  form   -56 50 21   delta  3
38  form   21 76 -17   delta  -4
39  form   -17 60 53   delta  1
40  form   53 46 -24   delta  -2
41  form   -24 50 49   delta  1
42  form   49 48 -25   delta  -2
43  form   -25 52 45   delta  1
44  form   45 38 -32   delta  -1
45  form   -32 26 51   delta  1
46  form   51 76 -7   delta  -11
47  form   -7 78 40   delta  2
48  form   40 82 -3   delta  -27
49  form   -3 80 67   delta  1
50  form   67 54 -16   delta  -4
51  form   -16 74 27   delta  2
52  form   27 34 -56   delta  -1
53  form   -56 78 5   delta  16
54  form   5 82 -24   delta  -3
55  form   -24 62 35   delta  2
56  form   35 78 -8   delta  -10
57  form   -8 82 15   delta  5
58  form   15 68 -43   delta  -1
59  form   -43 18 40   delta  1
60  form   40 62 -21   delta  -3
61  form   -21 64 37   delta  2
62  form   37 84 -1   delta  -84
63  form   -1 84 37   delta  2
64  form   37 64 -21   delta  -3
65  form   -21 62 40   delta  1
66  form   40 18 -43   delta  -1
67  form   -43 68 15   delta  5
68  form   15 82 -8   delta  -10
69  form   -8 78 35   delta  2
70  form   35 62 -24   delta  -3
71  form   -24 82 5   delta  16
72  form   5 78 -56   delta  -1
73  form   -56 34 27   delta  2
74  form   27 74 -16   delta  -4
75  form   -16 54 67   delta  1
76  form   67 80 -3   delta  -27
77  form   -3 82 40   delta  2
78  form   40 78 -7   delta  -11
79  form   -7 76 51   delta  1
80  form   51 26 -32   delta  -1
81  form   -32 38 45   delta  1
82  form   45 52 -25   delta  -2
83  form   -25 48 49   delta  1
84  form   49 50 -24   delta  -2
85  form   -24 46 53   delta  1
86  form   53 60 -17   delta  -4
87  form   -17 76 21   delta  3
88  form   21 50 -56   delta  -1
89  form   -56 62 15   delta  4
90  form   15 58 -64   delta  -1
91  form   -64 70 9   delta  8
92  form   9 74 -48   delta  -1
93  form   -48 22 35   delta  1
94  form   35 48 -35   delta  -1
95  form   -35 22 48   delta  1
96  form   48 74 -9   delta  -8
97  form   -9 70 64   delta  1
98  form   64 58 -15   delta  -4
99  form   -15 62 56   delta  1
100  form   56 50 -21   delta  -3
101  form   -21 76 17   delta  4
102  form   17 60 -53   delta  -1
103  form   -53 46 24   delta  2
104  form   24 50 -49   delta  -1
105  form   -49 48 25   delta  2
106  form   25 52 -45   delta  -1
107  form   -45 38 32   delta  1
108  form   32 26 -51   delta  -1
109  form   -51 76 7   delta  11
110  form   7 78 -40   delta  -2
111  form   -40 82 3   delta  27
112  form   3 80 -67   delta  -1
113  form   -67 54 16   delta  4
114  form   16 74 -27   delta  -2
115  form   -27 34 56   delta  1
116  form   56 78 -5   delta  -16
117  form   -5 82 24   delta  3
118  form   24 62 -35   delta  -2
119  form   -35 78 8   delta  10
120  form   8 82 -15   delta  -5
121  form   -15 68 43   delta  1
122  form   43 18 -40   delta  -1
123  form   -40 62 21   delta  3
124  form   21 64 -37   delta  -2
125  form   -37 84 1   delta  84
126  form   1 84 -37

 disc 7204
Automorph, written on right of Gram matrix:  
8329143980792153679548730627982433105816857717738527006289  703297844884742717748143927348581545599367975438677758224360
19008049861749803182382268306718420151334269606450750222280  1605005332367775620999659268392329725817895504659601545677809


 Pell automorph 
806667238174283887339603999510156079461856181188670036342049  34233497801011395531470465220399874692553019561217801150326280
19008049861749803182382268306718420151334269606450750222280  806667238174283887339603999510156079461856181188670036342049

Pell unit 
806667238174283887339603999510156079461856181188670036342049^2 - 1801 * 19008049861749803182382268306718420151334269606450750222280^2 = 1 

=========================================

Pell NEGATIVE 
635085521081328025318961532468^2 - 1801 * 14964952932154520840080376605^2 = -1 

=========================================

1801       1801

Sun Jul 14 17:06:47 PDT 2019
jagy@phobeusjunior:~/old drive/home/jagy/Cplusplus$ 
Will Jagy
  • 139,541
2

just the part where the "digits" are calculated:

Method described by Prof. Lubin at Continued fraction of $\sqrt{67} - 4$

$$ \sqrt { 1801} = 42 + \frac{ \sqrt {1801} - 42 }{ 1 } $$ $$ \frac{ 1 }{ \sqrt {1801} - 42 } = \frac{ \sqrt {1801} + 42 }{37 } = 2 + \frac{ \sqrt {1801} - 32 }{37 } $$ $$ \frac{ 37 }{ \sqrt {1801} - 32 } = \frac{ \sqrt {1801} + 32 }{21 } = 3 + \frac{ \sqrt {1801} - 31 }{21 } $$ $$ \frac{ 21 }{ \sqrt {1801} - 31 } = \frac{ \sqrt {1801} + 31 }{40 } = 1 + \frac{ \sqrt {1801} - 9 }{40 } $$ $$ \frac{ 40 }{ \sqrt {1801} - 9 } = \frac{ \sqrt {1801} + 9 }{43 } = 1 + \frac{ \sqrt {1801} - 34 }{43 } $$ $$ \frac{ 43 }{ \sqrt {1801} - 34 } = \frac{ \sqrt {1801} + 34 }{15 } = 5 + \frac{ \sqrt {1801} - 41 }{15 } $$ $$ \frac{ 15 }{ \sqrt {1801} - 41 } = \frac{ \sqrt {1801} + 41 }{8 } = 10 + \frac{ \sqrt {1801} - 39 }{8 } $$ $$ \frac{ 8 }{ \sqrt {1801} - 39 } = \frac{ \sqrt {1801} + 39 }{35 } = 2 + \frac{ \sqrt {1801} - 31 }{35 } $$ $$ \frac{ 35 }{ \sqrt {1801} - 31 } = \frac{ \sqrt {1801} + 31 }{24 } = 3 + \frac{ \sqrt {1801} - 41 }{24 } $$ $$ \frac{ 24 }{ \sqrt {1801} - 41 } = \frac{ \sqrt {1801} + 41 }{5 } = 16 + \frac{ \sqrt {1801} - 39 }{5 } $$ $$ \frac{ 5 }{ \sqrt {1801} - 39 } = \frac{ \sqrt {1801} + 39 }{56 } = 1 + \frac{ \sqrt {1801} - 17 }{56 } $$ $$ \frac{ 56 }{ \sqrt {1801} - 17 } = \frac{ \sqrt {1801} + 17 }{27 } = 2 + \frac{ \sqrt {1801} - 37 }{27 } $$ $$ \frac{ 27 }{ \sqrt {1801} - 37 } = \frac{ \sqrt {1801} + 37 }{16 } = 4 + \frac{ \sqrt {1801} - 27 }{16 } $$ $$ \frac{ 16 }{ \sqrt {1801} - 27 } = \frac{ \sqrt {1801} + 27 }{67 } = 1 + \frac{ \sqrt {1801} - 40 }{67 } $$ $$ \frac{ 67 }{ \sqrt {1801} - 40 } = \frac{ \sqrt {1801} + 40 }{3 } = 27 + \frac{ \sqrt {1801} - 41 }{3 } $$ $$ \frac{ 3 }{ \sqrt {1801} - 41 } = \frac{ \sqrt {1801} + 41 }{40 } = 2 + \frac{ \sqrt {1801} - 39 }{40 } $$ $$ \frac{ 40 }{ \sqrt {1801} - 39 } = \frac{ \sqrt {1801} + 39 }{7 } = 11 + \frac{ \sqrt {1801} - 38 }{7 } $$ $$ \frac{ 7 }{ \sqrt {1801} - 38 } = \frac{ \sqrt {1801} + 38 }{51 } = 1 + \frac{ \sqrt {1801} - 13 }{51 } $$ $$ \frac{ 51 }{ \sqrt {1801} - 13 } = \frac{ \sqrt {1801} + 13 }{32 } = 1 + \frac{ \sqrt {1801} - 19 }{32 } $$ $$ \frac{ 32 }{ \sqrt {1801} - 19 } = \frac{ \sqrt {1801} + 19 }{45 } = 1 + \frac{ \sqrt {1801} - 26 }{45 } $$ $$ \frac{ 45 }{ \sqrt {1801} - 26 } = \frac{ \sqrt {1801} + 26 }{25 } = 2 + \frac{ \sqrt {1801} - 24 }{25 } $$ $$ \frac{ 25 }{ \sqrt {1801} - 24 } = \frac{ \sqrt {1801} + 24 }{49 } = 1 + \frac{ \sqrt {1801} - 25 }{49 } $$ $$ \frac{ 49 }{ \sqrt {1801} - 25 } = \frac{ \sqrt {1801} + 25 }{24 } = 2 + \frac{ \sqrt {1801} - 23 }{24 } $$ $$ \frac{ 24 }{ \sqrt {1801} - 23 } = \frac{ \sqrt {1801} + 23 }{53 } = 1 + \frac{ \sqrt {1801} - 30 }{53 } $$ $$ \frac{ 53 }{ \sqrt {1801} - 30 } = \frac{ \sqrt {1801} + 30 }{17 } = 4 + \frac{ \sqrt {1801} - 38 }{17 } $$ $$ \frac{ 17 }{ \sqrt {1801} - 38 } = \frac{ \sqrt {1801} + 38 }{21 } = 3 + \frac{ \sqrt {1801} - 25 }{21 } $$ $$ \frac{ 21 }{ \sqrt {1801} - 25 } = \frac{ \sqrt {1801} + 25 }{56 } = 1 + \frac{ \sqrt {1801} - 31 }{56 } $$ $$ \frac{ 56 }{ \sqrt {1801} - 31 } = \frac{ \sqrt {1801} + 31 }{15 } = 4 + \frac{ \sqrt {1801} - 29 }{15 } $$ $$ \frac{ 15 }{ \sqrt {1801} - 29 } = \frac{ \sqrt {1801} + 29 }{64 } = 1 + \frac{ \sqrt {1801} - 35 }{64 } $$ $$ \frac{ 64 }{ \sqrt {1801} - 35 } = \frac{ \sqrt {1801} + 35 }{9 } = 8 + \frac{ \sqrt {1801} - 37 }{9 } $$ $$ \frac{ 9 }{ \sqrt {1801} - 37 } = \frac{ \sqrt {1801} + 37 }{48 } = 1 + \frac{ \sqrt {1801} - 11 }{48 } $$ $$ \frac{ 48 }{ \sqrt {1801} - 11 } = \frac{ \sqrt {1801} + 11 }{35 } = 1 + \frac{ \sqrt {1801} - 24 }{35 } $$ $$ \frac{ 35 }{ \sqrt {1801} - 24 } = \frac{ \sqrt {1801} + 24 }{35 } = 1 + \frac{ \sqrt {1801} - 11 }{35 } $$ $$ \frac{ 35 }{ \sqrt {1801} - 11 } = \frac{ \sqrt {1801} + 11 }{48 } = 1 + \frac{ \sqrt {1801} - 37 }{48 } $$ $$ \frac{ 48 }{ \sqrt {1801} - 37 } = \frac{ \sqrt {1801} + 37 }{9 } = 8 + \frac{ \sqrt {1801} - 35 }{9 } $$ $$ \frac{ 9 }{ \sqrt {1801} - 35 } = \frac{ \sqrt {1801} + 35 }{64 } = 1 + \frac{ \sqrt {1801} - 29 }{64 } $$ $$ \frac{ 64 }{ \sqrt {1801} - 29 } = \frac{ \sqrt {1801} + 29 }{15 } = 4 + \frac{ \sqrt {1801} - 31 }{15 } $$ $$ \frac{ 15 }{ \sqrt {1801} - 31 } = \frac{ \sqrt {1801} + 31 }{56 } = 1 + \frac{ \sqrt {1801} - 25 }{56 } $$ $$ \frac{ 56 }{ \sqrt {1801} - 25 } = \frac{ \sqrt {1801} + 25 }{21 } = 3 + \frac{ \sqrt {1801} - 38 }{21 } $$ $$ \frac{ 21 }{ \sqrt {1801} - 38 } = \frac{ \sqrt {1801} + 38 }{17 } = 4 + \frac{ \sqrt {1801} - 30 }{17 } $$ $$ \frac{ 17 }{ \sqrt {1801} - 30 } = \frac{ \sqrt {1801} + 30 }{53 } = 1 + \frac{ \sqrt {1801} - 23 }{53 } $$ $$ \frac{ 53 }{ \sqrt {1801} - 23 } = \frac{ \sqrt {1801} + 23 }{24 } = 2 + \frac{ \sqrt {1801} - 25 }{24 } $$ $$ \frac{ 24 }{ \sqrt {1801} - 25 } = \frac{ \sqrt {1801} + 25 }{49 } = 1 + \frac{ \sqrt {1801} - 24 }{49 } $$ $$ \frac{ 49 }{ \sqrt {1801} - 24 } = \frac{ \sqrt {1801} + 24 }{25 } = 2 + \frac{ \sqrt {1801} - 26 }{25 } $$ $$ \frac{ 25 }{ \sqrt {1801} - 26 } = \frac{ \sqrt {1801} + 26 }{45 } = 1 + \frac{ \sqrt {1801} - 19 }{45 } $$ $$ \frac{ 45 }{ \sqrt {1801} - 19 } = \frac{ \sqrt {1801} + 19 }{32 } = 1 + \frac{ \sqrt {1801} - 13 }{32 } $$ $$ \frac{ 32 }{ \sqrt {1801} - 13 } = \frac{ \sqrt {1801} + 13 }{51 } = 1 + \frac{ \sqrt {1801} - 38 }{51 } $$ $$ \frac{ 51 }{ \sqrt {1801} - 38 } = \frac{ \sqrt {1801} + 38 }{7 } = 11 + \frac{ \sqrt {1801} - 39 }{7 } $$ $$ \frac{ 7 }{ \sqrt {1801} - 39 } = \frac{ \sqrt {1801} + 39 }{40 } = 2 + \frac{ \sqrt {1801} - 41 }{40 } $$ $$ \frac{ 40 }{ \sqrt {1801} - 41 } = \frac{ \sqrt {1801} + 41 }{3 } = 27 + \frac{ \sqrt {1801} - 40 }{3 } $$ $$ \frac{ 3 }{ \sqrt {1801} - 40 } = \frac{ \sqrt {1801} + 40 }{67 } = 1 + \frac{ \sqrt {1801} - 27 }{67 } $$ $$ \frac{ 67 }{ \sqrt {1801} - 27 } = \frac{ \sqrt {1801} + 27 }{16 } = 4 + \frac{ \sqrt {1801} - 37 }{16 } $$ $$ \frac{ 16 }{ \sqrt {1801} - 37 } = \frac{ \sqrt {1801} + 37 }{27 } = 2 + \frac{ \sqrt {1801} - 17 }{27 } $$ $$ \frac{ 27 }{ \sqrt {1801} - 17 } = \frac{ \sqrt {1801} + 17 }{56 } = 1 + \frac{ \sqrt {1801} - 39 }{56 } $$ $$ \frac{ 56 }{ \sqrt {1801} - 39 } = \frac{ \sqrt {1801} + 39 }{5 } = 16 + \frac{ \sqrt {1801} - 41 }{5 } $$ $$ \frac{ 5 }{ \sqrt {1801} - 41 } = \frac{ \sqrt {1801} + 41 }{24 } = 3 + \frac{ \sqrt {1801} - 31 }{24 } $$ $$ \frac{ 24 }{ \sqrt {1801} - 31 } = \frac{ \sqrt {1801} + 31 }{35 } = 2 + \frac{ \sqrt {1801} - 39 }{35 } $$ $$ \frac{ 35 }{ \sqrt {1801} - 39 } = \frac{ \sqrt {1801} + 39 }{8 } = 10 + \frac{ \sqrt {1801} - 41 }{8 } $$ $$ \frac{ 8 }{ \sqrt {1801} - 41 } = \frac{ \sqrt {1801} + 41 }{15 } = 5 + \frac{ \sqrt {1801} - 34 }{15 } $$ $$ \frac{ 15 }{ \sqrt {1801} - 34 } = \frac{ \sqrt {1801} + 34 }{43 } = 1 + \frac{ \sqrt {1801} - 9 }{43 } $$ $$ \frac{ 43 }{ \sqrt {1801} - 9 } = \frac{ \sqrt {1801} + 9 }{40 } = 1 + \frac{ \sqrt {1801} - 31 }{40 } $$ $$ \frac{ 40 }{ \sqrt {1801} - 31 } = \frac{ \sqrt {1801} + 31 }{21 } = 3 + \frac{ \sqrt {1801} - 32 }{21 } $$ $$ \frac{ 21 }{ \sqrt {1801} - 32 } = \frac{ \sqrt {1801} + 32 }{37 } = 2 + \frac{ \sqrt {1801} - 42 }{37 } $$ $$ \frac{ 37 }{ \sqrt {1801} - 42 } = \frac{ \sqrt {1801} + 42 }{1 } = 84 + \frac{ \sqrt {1801} - 42 }{1 } $$

Will Jagy
  • 139,541
0

Solution is smallest even power of fundamental unit of form $x^2-1801$.

gp-code:

pell(d,c)=
{
 Q= bnfinit('x^2-d);
 fu= Q.fu[1]; print("Fundamental Unit: "fu);
 N= bnfisintnorm(Q, c);  print("Fundamental Solutions (Norm): "N);
 for(k=1, #N, n= N[k];
  for(j=0, 100,
   s= lift(n*fu^j);
   X= abs(polcoeff(s, 0)); Y= abs(polcoeff(s, 1));  
   if(Y, if(X==floor(X)&&Y==floor(Y), if(X^2-d*Y^2==c,
    print("Smallest Solution (X,Y) = ("X", "Y")");
    print("Smallest Power j = "j);
    break(2)
   )))
  )
 )
};

Output:

? pell(1801,1)
Fundamental Unit: Mod(14964952932154520840080376605*x - 635085521081328025318961532468, x^2 - 1801)
Fundamental Solutions (Norm): [1]
Smallest Solution (X,Y) = (806667238174283887339603999510156079461856181188670036342049, 19008049861749803182382268306718420151334269606450750222280)
Smallest Power j = 2

Verifing:

? Mod(14964952932154520840080376605*x - 635085521081328025318961532468,x^2 - 1801)^2
%1 = Mod(-19008049861749803182382268306718420151334269606450750222280*x + 806667238174283887339603999510156079461856181188670036342049, x^2 - 1801)
Dmitry Ezhov
  • 1,653