Solution is smallest even power of fundamental unit of form $x^2-1801$.
gp-code:
pell(d,c)=
{
Q= bnfinit('x^2-d);
fu= Q.fu[1]; print("Fundamental Unit: "fu);
N= bnfisintnorm(Q, c); print("Fundamental Solutions (Norm): "N);
for(k=1, #N, n= N[k];
for(j=0, 100,
s= lift(n*fu^j);
X= abs(polcoeff(s, 0)); Y= abs(polcoeff(s, 1));
if(Y, if(X==floor(X)&&Y==floor(Y), if(X^2-d*Y^2==c,
print("Smallest Solution (X,Y) = ("X", "Y")");
print("Smallest Power j = "j);
break(2)
)))
)
)
};
Output:
? pell(1801,1)
Fundamental Unit: Mod(14964952932154520840080376605*x - 635085521081328025318961532468, x^2 - 1801)
Fundamental Solutions (Norm): [1]
Smallest Solution (X,Y) = (806667238174283887339603999510156079461856181188670036342049, 19008049861749803182382268306718420151334269606450750222280)
Smallest Power j = 2
Verifing:
? Mod(14964952932154520840080376605*x - 635085521081328025318961532468,x^2 - 1801)^2
%1 = Mod(-19008049861749803182382268306718420151334269606450750222280*x + 806667238174283887339603999510156079461856181188670036342049, x^2 - 1801)