Show $$\ln(2)=\sum_{i=1}^{\infty}\frac{(-1)^{n+1}}{n}$$
We know que if $|z|<1$.
$$\ln(1-z)=-\sum_{i=1}^{\infty}\frac{(z)^{n}}{n}$$
But $z=-1$ for our case and I wouldn't meet the condition $|z|<1$.
Show $$\ln(2)=\sum_{i=1}^{\infty}\frac{(-1)^{n+1}}{n}$$
We know que if $|z|<1$.
$$\ln(1-z)=-\sum_{i=1}^{\infty}\frac{(z)^{n}}{n}$$
But $z=-1$ for our case and I wouldn't meet the condition $|z|<1$.