The problem can be attacked using generating functions (e.g. here).
We can take $3$ steps move after the $k$-th step. I.e. split the entire walk into first $k$ steps, one $3$ steps move and $n-k-3$ steps. Then, for the first part, the number of integer solutions of
$$x_1+2x_2=k, x_1\geq0,x_2\geq0 \tag{1}$$
is the number of ways to traverse those $k$ steps with $1$ or $2$ steps moves. For the last - the number of integer solutions of
$$x_3+2x_4=n-k-3, x_3\geq0,x_4\geq0 \tag{2}$$
is the number of ways to traverse the last $n-k-3$ steps with $1$ or $2$ steps moves.
All these for $k=0$ to $n-3$.
Generally, the number of integer solutions for $$x_1+2x_2=k, x_1\geq0,x_2\geq0 \tag{3}$$
is the coefficient of $x^k$ of the generating function
$$(1+x+x^2+...)(1+x^2+x^4+...+x^{2n}+...)=\frac{1}{1-x}\cdot \frac{1}{1-x^2}=\\
\frac{1}{2(1-x)^2} + \frac{1}{4(1-x)} + \frac{1}{4(1+x)}=...$$
which is
$$...=\frac{1}{2}\left(\sum\limits_{n=0}(n+1)x^n\right)+
\frac{1}{4}\left(\sum\limits_{n=0}x^n\right)+
\frac{1}{4}\left(\sum\limits_{n=0}(-1)^nx^n\right)=\\
\sum\limits_{n=0}\left(\frac{n+1}{2}+\frac{1+(-1)^n}{4}\right)x^n$$
and the coefficient is
$$\frac{k+1}{2}+\frac{1+(-1)^k}{4} \tag{4}$$
Back to $(1)$ and $(2)$ we have
$$\frac{k+1}{2}+\frac{1+(-1)^k}{4} \text{ and }
\frac{n-k-3+1}{2}+\frac{1+(-1)^{n-k-3}}{4}$$
or
$$\frac{k+1}{2}+\frac{1+(-1)^k}{4}+\frac{n-k-3+1}{2}+\frac{1+(-1)^{n-k-3}}{4}=\\
\frac{n-1}{2}+\frac{2+(-1)^k+(-1)^{n-k-3}}{4}=\\
\frac{n}{2}+\frac{(-1)^k+(-1)^{n-k-3}}{4}$$
and finally
$$\sum\limits_{k=0}^{n-3}\left(\frac{n}{2}+\frac{(-1)^k+(-1)^{n-k-3}}{4}\right)=\\
\frac{n(n-2)}{2}+\sum\limits_{k=0}^{n-3}\left(\frac{(-1)^k+(-1)^{n-k-3}}{4}\right)=\\
\frac{n(n-2)}{2}+\frac{1}{2}\left(\sum\limits_{k=0}^{n-3}(-1)^k\right) \tag{5}$$
See if you can simplify it any further.