I will show the calculation of (On upper plane)
$$\sum_r Res\left(\frac{x}{h(x)},r\right)=0,\quad
\sum_r Res\left(\frac{x^2}{h(x)},r\right)=\frac{1}{2i},\quad
\sum_r Res\left(\frac{x^3}{h(x)},r\right)= -\frac{1}{2i},\quad
\sum_r Res\left(\frac{x^4}{h(x)},r\right)=\frac{3}{2i} $$
using formula $Res(f,r)=\frac{g(r)}{h'(r)}$
Denominator $$h(x)=(x^3+2x^2-x-1)^2+(x^2+x-1)^2 \\ =((x^3 + 2 x^2 - x - 1) - i (x^2 + x - 1))((x^3 + 2 x^2 - x - 1) + i (x^2 + x - 1))$$
Numeric calculation show that all root(all roots are simple) in upper plane is given by $$(x^3 + 2 x^2 - x - 1) - i (x^2 + x - 1)=0$$
So if $r$ is a root of $$(x^3 + 2 x^2 - x - 1) - i (x^2 + x - 1)$$
Then $$r^3 = -(2-i) r^2+(1+i) r+(1-i)$$
Let $S=-(2-i),J=-(1+i),P=(1-i)$, Vieta's formulas will be applied later.
Derivative of denominator is given by $$6 x^5+20 x^4+12 x^3-12 x^2-8 x$$
Note that $$Res(f,r)=\frac{r^n}{6 r^5+20 r^4+12 r^3-12 r^2-8 r}\\
=\frac{r^{n-1}}{6 r^4+20 r^3+12 r^2-12 r-8}$$
Using $r^3 = -(2-i) r^2+(1+i) r+(1-i)$ we can always reduces polynomial of r to degree not greater than $2$, i.e.:
$$
6 r^4+20 r^3+12 r^2-12 r-8=(6 - 2 i) - (4 - 8 i) r - (4 - 2 i) r^2
$$
The denominator of
$$\sum_{r=A,B,C} \frac{g(r)}{(6 - 2 i) - (4 - 8 i) r - (4 - 2 i) r^2 }$$
is given by
$$
(52 + 36 i) \\
-(88-16 i) A-(88-16 i) B-(88-16 i) C \\
-(40 + 20 i) A^2 - (40 + 20 i) B^2 - (40 + 20 i) C^2 \\
+(72 - 104 i) A B + (72 - 104 i) A C + (72 - 104 i) B C \\
+(60 - 20 I) A^2 B + (60 - 20 I) A B^2 + (60 - 20 i) A C^2 + (60 -
20 i) B C^2 + (60 - 20 i) A^2 C + (60 - 20 i) B^2 C\\
+(30 + 10 i) A^2 B^2 + (30 + 10 i) A^2 C^2 + (30 + 10 i) B^2 C^2 \\
-(40 - 80 i) A^2 B C - (40 - 80 i) A B^2 C - (40 - 80 i) A B C^2 \\
-(40 - 20 i) A^2 B^2 C - (40 - 20 i) A B^2 C^2 - (40 - 20 i) A^2 B C^2\\
+(32 + 176 i) A B C \\
-(22 + 4 i) A^2 B^2 C^2
$$
which is equal to
$$
(52 + 36 i) - (88 - 16 i) S - (40 + 20 i) (S^2 - 2 J) + (72 -
104 i) J + (60 - 20 i) (S J - 3 P) + (30 + 10 i) (J^2 -
2 P S) - (40 - 80 i) P S - (40 - 20 i) P J + (32 +
176 i) P - (22 + 4 i) P^2 \\
=56 + 16 i
$$
When $g(r)=1$, the numerator is given by
$$
(18 + 24 i)\\
-(28 + 4 i) A - (28 + 4 i) B - (28 + 4 i) C \\
-(10 + 10 i) A^2 - (10 + 10 i) B^2 - (10 + 10 i) C^2 \\
+(16 - 12 i) A B + (16 - 12 i) B C + (16 - 12 i) A C \\
+(4 + 3 i) B^2 C^2 + (4 + 3 i) A^2 C^2 + (4 + 3 i) A^2 B^2 \\
+10 A^2 B + 10 A B^2 + 10 A^2 C + 10 B^2 C + 10 A C^2 + 10 B C^2
$$
which is equal to
$$
(18 + 24 i) - (28 + 4 i) S - (10 + 10 i) (S^2 - 2 J) + (16 -
12 i) J + (4 + 3 i) (J^2 - 2 P S) + 10 (S J - 3 P) \\
=0
$$
When $g(r)=r$, the numerator is given by
$$
(6 + 8 i) A + (6 + 8 i) B + (6 + 8 i) C\\
-(28 + 4 i) A B - (28 + 4 i) A C - (28 + 4 i) B C\\
-(5 + 5 i) A^2 B - (5 + 5 i) A B^2 - (5 + 5 i) A^2 C - (5 +
5 i) B^2 C - (5 + 5 i) A C^2 - (5 + 5 i) B C^2\\
+(48 - 36 i) A B C\\
+20 A^2 B C + 20 A B^2 C + 20 A B C^2\\
+(4 + 3 i) A^2 B^2 C + (4 + 3 i) A^2 B C^2 + (4 + 3 i) A B^2 C^2
$$
which is equal to
$$
(6 + 8 i) S - (28 + 4 i) J - (5 + 5 i) (S J - 3 P) + (48 - 36 i) P +
20 S P + (4 + 3 i) P J\\
=8 - 28 i
$$
When $g(r)=r^2$, the numerator is given by
$$
(6 + 8 i) A^2 + (6 + 8 i) B^2 + (6 + 8 i) C^2 \\
-(14 + 2 i) A^2 B - (14 + 2 i) A B^2 - (14 + 2 i) A^2 C -(14 + 2 i) B^2 C - (14 + 2 i) A C^2 - (14 + 2 i) B C^2\\
-(10 + 10 i) A^2 B^2 - (10 + 10 i) A^2 C^2 - (10 + 10 i) B^2 C^2 \\
+(16 - 12 i) A^2 B C + (16 - 12 i) A B^2 C + (16 - 12 i) A B C^2 \\
+20 A^2 B^2 C + 20 A^2 B C^2 + 20 A B^2 C^2\\
+(12 + 9 i) A^2 B^2 C^2\\
$$
which is equal to
$$
(6 + 8 i) (S^2 - 2 J) - (14 + 2 i) (S J - 3 P) - (10 + 10 i) (J^2 -
2 P S) + (16 - 12 i) S P + 20 P J + (12 + 9 i) P^2\\
=-8 + 28 i
$$
The result followed by togethering all the things.