Let $f_i:\Omega\to\mathbb{R}$, $i\in I=\{1,2,...,n\}$, then \begin{align} \sigma(f_i,\, i\in I) = \sigma \{f_i^{-1}(B_i):B_i\in \mathcal{B},\, i\in I\}, \end{align} where $\mathcal{B}$ is the Borel algebra on $\mathbb{R}$.
Can we replace the $\mathcal{B}$ with the its generators? That is, can we write \begin{align} \sigma(f_i,\, i\in I) = \sigma \{\{f_i\leq x\}:x\in\mathbb{R},\, i\in I\}? \end{align}