1

My attempt:

We note that-

$2002 \equiv 1$ (mod $29$)

$3^{2002}\equiv 3^{14}$ (mod $29$)

$7^{2002}\equiv 7^{14}$ (mod $29$) [From Fermat]

Now, how do I reduce $3^{14}$ and $7^{14}$?

Anurag Saha
  • 679
  • 5
  • 16

2 Answers2

7

Using Proof of $a^n+b^n$ divisible by $a+b$ when $n$ is odd

$$3^{2002}+7^{2002}=(3^2)^{1001}+(7^2)^{1001}$$ is divisible by $3^2+7^2$

1

To answer your original question, "Now, how do I reduce $3^{14}$ and $7^{14}$''

One approach would be (should you forget the theorem of a previous answer):

$$ 3^{14} \equiv (3^{3})^{4}(3^{2}) \equiv (-2)^{4}(9) \equiv -1 \pmod{29} $$

$$ 7^{14} \equiv (-9)^{7} \equiv (81)^{3}(-9) \equiv (-6)^{3}(-9) \equiv 1 \pmod{29}. $$

And so, your original number is divisible by $29.$

DDS
  • 3,199
  • 1
  • 8
  • 31
  • 1
    Or $\ \large 7\equiv 6^{\Large 2},$ so $\large ,7^{\Large 14}\equiv 6^{\Large 28}\equiv 1\ $ by Fermat. Or we can use quadratic reciprocity. – Bill Dubuque Jul 05 '19 at 03:26
  • @BillDubuque . Or $7^2\equiv -9 \implies$ $ 7^4\equiv -6\implies $ $7^8\equiv 7\implies$ $ 7^7\equiv 1. $ Hence $7^{2002}=(7^7)^{286}\equiv 1 . $ – DanielWainfleet Jul 05 '19 at 03:37
  • 1
    @Daniel But already $\ \large 7^{\Large 2}\equiv -3^{\Large 2}\ $ to power $\ \large ,7,\Rightarrow, 7^{\Large 14}\equiv -3^{\Large 14}\ \ $ – Bill Dubuque Jul 05 '19 at 03:50