Evaluate :
$I=\int_0^{b}\frac{\ln x}{x^2-1}dx$ where $b>1$
My attempt :
I use integral by part : $u=\ln x$ $dv=\frac{1}{x^2-1}$ Then : $u'=\frac{1}{x}$ and $v=\frac{\ln \frac{x-1}{x+1}}{2}$
So :
$I=[\frac{\ln x\ln\frac{x-1}{x+1}}{2}]_0^{b}$
$+\int_0^{b}\frac{\ln (1+x)-\ln (x-1)}{2x}dx$
My problem here is limit of integral because $b>1$ ?
And I can't complete the last integral !
ConditionalExpressiondoes not apply to the Problem as stated since the range of $b$ it requires, $0 \leq b \leq 1$, is incompatible with the Problem's $1<b<\infty$. – Eric Towers Jul 04 '19 at 09:20