This is an interesting relation between $\pi$ and $e$.
$$\sum_{k=1}^{\infty }\frac{1}{(k\pi)^2+1}=\frac{1}{\pi^2+1}+\frac{1}{4\pi^2+1}+\frac{1}{9\pi^2+1}+\frac{1}{16\pi^2+1}+\dots=\frac{1}{e^2-1}$$
I tried to prove it using Fourier series expansion, but I could not. Any hint will be appreciated.