5

This is an interesting relation between $\pi$ and $e$.

$$\sum_{k=1}^{\infty }\frac{1}{(k\pi)^2+1}=\frac{1}{\pi^2+1}+\frac{1}{4\pi^2+1}+\frac{1}{9\pi^2+1}+\frac{1}{16\pi^2+1}+\dots=\frac{1}{e^2-1}$$

I tried to prove it using Fourier series expansion, but I could not. Any hint will be appreciated.

Hussain-Alqatari
  • 5,065
  • 2
  • 13
  • 39

2 Answers2

6

Using the result that $$ \mathrm{PV}\sum_{k\in\mathbb{Z}}\frac1{x+k}=\pi\cot{\pi x} $$ we get $$ \begin{align} \sum_{k=1}^\infty\frac1{1+k^2\pi^2} &=\frac{i}{2\pi}\mathrm{PV}\sum_{k\in\mathbb{Z}}\frac1{i/\pi+k}-\frac12\\ &=\frac{i}{2\pi}\pi\cot\left(\pi\frac{i}\pi\right)-\frac12\\[3pt] &=\frac12\coth(1)-\frac12\\[3pt] &=\frac1{e^2-1} \end{align} $$

robjohn
  • 345,667
4

Hint: Use the expansion $$\coth x=\sum_{n=-\infty}^{\infty}\dfrac{x}{n^2\pi^2+x^2}$$

Nosrati
  • 29,995