Determine all $z \in \mathbb{C} $, so that: $$ \left| \frac{z-a}{1-\bar{a} z} \right| = 1,$$ where $a \in \mathbb{C}$, $|a| < 1$.
Let $ w = \frac{z-a}{1-\bar{a} z} $. As $|w| = 1$, I though of multiplying $w* \bar{w} (=1)$ but I got stuck at the step $|z|^{2} = \frac {1- |a|^{2}}{1+|a|^{2}}$. Any hint helps!