Let $R$ be a commutative unital ring, $I$ a set, and $R^{(I)}$ the free module on $I$.
Can there be a submodule $R^{(J)}\cong M\leq R^{(I)}$ with $|J|\!>\!|I|$?
Can $R^{(I)}$ be generated (as a $R$-module) by a subset $J$ with $|J|\!<\!|I|$?
Slightly related: does there exist an embedding of $R$-algebras $R[x_1,x_2,\ldots]\longrightarrow R[x,y]$?
I know that there exist an embedding of free groups $\langle x_1,x_2,\ldots|\emptyset\rangle \longrightarrow \langle x,y\|\emptyset\rangle$ and an embedding of free algebras $R\langle x_1,x_2,\ldots\rangle\longrightarrow R\langle x,y\rangle$, namely $x_n\longmapsto x^ny$.