Prove that for all $n\in\Bbb{Z}$, $a^{2n}-b^{2n}$ is divisible by $a+b$ using induction.
I know that if $a$ is divisible by $b$, then $a=kb$, where $k\in\Bbb{Z}$. Here we have that $a^{2n}-b^{2n}=(a+b)k$, with $k\in\Bbb{Z}$.
For the base case I set $n=1$, so $a^2-b^2=(a+b)(a-b)=(a+b)k$, where $k=a-b\in\Bbb{Z}$.
Now the inductive step (where I have doubts): $$a^{2n}-b^{2n}=(a+b)k\implies a^{2(n+1)}-b^{2(n+1)}=(a+b)m,\;k,m\in\Bbb{Z}.$$ We start from $a^{2(n+1)}-b^{2(n+1)}$. Then $$a^{2n+2}-b^{2n+2}=(a+b)\color{red}{(a^{2n+1}-a^{2n}b+a^{2n-1}b^2-\dots-a^2b^{2n-1}-ab^{2n}+b^{2n+1})},$$ so $a^{2(n+1)}-b^{2(n+1)}=(a+b)m$, where $m=a^{2n+1}-a^{2n}b+a^{2n-1}b^2-\dots-a^2b^{2n-1}-ab^{2n}+b^{2n+1}\in\Bbb{Z}.\qquad\square$
I have two questions:
- Is the math in $\color{red}{\text{red}}$ a correct descomposition of $a^{2(n+1)}-b^{2(n+1)}$?
- We have not used the inductive hypothesis. Could we use it?
$$ x^n-y^n=(x-y)\sum_{k=1}^n x^{k-1} y^{n-k}$$ This will simplify things, I guess. This identity is very useful, so try to remember it ;)
– Masacroso Jul 01 '19 at 03:01