Find all integers $n\geq 3$ for which there exist real numbers $a_{1}, a_{2},...,a_{n+2}$ satisfying $a_{n+1}=a_{1}$ , $a_{n+2}=a_{2}$ and:
$a_{i}a_{i+1}+1=a_{i+2}$
for $i=1,2,..,n$
Find all integers $n\geq 3$ for which there exist real numbers $a_{1}, a_{2},...,a_{n+2}$ satisfying $a_{n+1}=a_{1}$ , $a_{n+2}=a_{2}$ and:
$a_{i}a_{i+1}+1=a_{i+2}$
for $i=1,2,..,n$
Hint.
Solving backwards we have for
$$ \begin{cases} n=2\to \{2,-1,-1,2\}\\ n=5\to \{2,-1,-1,2,\frac 12,-1,2\}\\ n=8\to \{2,-1,-1,2,\frac 12,-1,2,\frac 12,-1,2\}\\ \vdots\\ n=2+3k\to \{2,-1,\underbrace{-1,2,\frac 12}_{k},-1,2\} \end{cases} $$
NOTE
The real solutions arise from
$$ \left\{ \begin{array}{rcl} a_1&=&\frac{a_2-1}{a_1} \\ a_2&=&1-\frac{a_1}{a_2-1} \\ \end{array} \right. $$
the other possibilities
$$ \left\{ \begin{array}{c} a_1=1-\frac{a_1}{a_2-1} \\ a_2=\frac{a_1}{a_1-a_2+1} \\ \end{array} \right. \ \ \text{and}\ \ \left\{ \begin{array}{c} a_1=\frac{a_1}{a_1-a_2+1} \\ a_2=\frac{a_2-1}{a_1} \\ \end{array} \right. $$
have no real solutions.