I need to get a formula for area under $y=x^{-2}$ for $x \in (1,a)$, where $a \in (1, +\infty)$, WITHOUT using integrals. I tried following:
- Let $h=\frac{a}{n}$, where $n$ is natural number of sections you got by dividing abscissa from $1$ to $a$
- Then $S = h\cdot(1h)^{-2}+h\cdot (2h)^{-2}+...+h \cdot(nh)^{-2}= (\frac{1}{h})\cdot(1+\frac{1}{4}+\frac{1}{9}+...+\frac{1}{n^2})=???$