HINT for a Markov approach
If at a certain point you have $A$ ordinary and $B$ belgian chocolates, when you select the three chocolates
you can select :
- $[a,a,a]$ (three ordinary ch.) with prob.
$$
{A \over {A + B}}{{A - 1} \over {A - 1 + B}}{{A - 2} \over {A - 2 + B}} = {{A^{\,\underline {\,3\,} } } \over {\left( {A + B} \right)^{\,\underline {\,3\,} } }}
$$
- $[a,a,b]$ with prob.
$$
{A \over {A + B}}{{A - 1} \over {A - 1 + B}}{B \over {A - 1 + B}} = {{A^{\,\underline {\,2\,} } B^{\,\underline {\,1\,} } } \over {\left( {A + B} \right)^{\,\underline {\,2\,} } \left( {A - 1 + B} \right)}}
$$
- $[a,b,a]$ with prob.
$$
{A \over {A + B}}{B \over {A - 1 + B}}{{A - 1} \over {A - 1 + B - 1}} = {{A^{\,\underline {\,2\,} } B^{\,\underline {\,1\,} } } \over {\left( {A + B} \right)^{\,\underline {\,3\,} } }}
$$
and so on, obtaining the development of
$$
\left( {A + B} \right)^{\,\underline {\,3\,} } = \sum\limits_j {\left( \matrix{
3 \hfill \cr
j \hfill \cr} \right)A^{\,\underline {\,3 - j\,} } B^{\,\underline {\,j\,} } }
$$
The falling factorial at the numerator will ensure that we are not going to pick more pieces than available, and we shall
ensure that the fraction be null, whenever the numerator is null.
At the end, we are going to restore three ordinary chocolates, i.e. bring $A$ to $A+3$ and restore the total to the original $N=A+B$
It is therefore possible to write the probabilities that after a cycle of picking and restoring the number of ordinary ch. passes from $A$ to $A+0,\, A+1, \, A+2, \, A+3$
(with $B$ being the complement to $N$).
That means that we can set up a 4-diagonal Markov Matrix for $A$, or else for $B$, and study the characteristics of that.
Performing the calculations as above the $A$-th row of the transition matrix will be
$$
\begin{array}{*{20}c}
{} & | & \cdots & A & {A + 1} & {A + 2} & {A + 3} \\
\hline
A & | & \ddots & {\frac{{A^{\,\underline {\,3\,} } }}{{N^{\,\underline {\,3\,} } }}}
& {3\frac{{A^{\,\underline {\,2\,} } \left( {N - A} \right)^{\,\underline {\,1\,} } }}{{N^{\,\underline {\,3\,} } }}}
& {3\frac{{A^{\,\underline {\,1\,} } \left( {N - A} \right)^{\,\underline {\,2\,} } }}{{N^{\,\underline {\,3\,} } }}}
& {\frac{{\left( {N - A} \right)^{\,\underline {\,3\,} } }}{{N^{\,\underline {\,3\,} } }}} \\
\end{array}
$$
Example
To contain the dimensions of the matrix, let's consider the case $N=4$, then the transition matrix is
$$
T\left( 4 \right) = \frac{1}{4} \, \left( {\matrix{
0 & 0 & 0 & 1 & 0 \cr
0 & 0 & 0 & 3 & 1 \cr
0 & 0 & 0 & 2 & 2 \cr
0 & 0 & 0 & 1 & 3 \cr
0 & 0 & 0 & 0 & 1 \cr
} } \right)
$$