I've been trying to prove that If $(f_{n})_{n}$ is cauchy in measure, i.e $\mu(|f_{n}-f_{m}|\geq\delta)<\epsilon$ for $n,m $ relatively big then it converges to a measurable function in measure. Now, if $\mu(\Omega)$ is finite then it is enough to prove that if $(f_{n})_{n}$(which converges cauchy in measure) converges a.e to a measurable function, because in a space of finite measure, convergence almost everywhere implies convergence in measure. This might be a really basic question, but I havent been able to prove it.
Any help would be really appreciated. Thanks guys <3