According to the definition of $\epsilon$-$\delta$ of a limit we have:
$\forall \epsilon \gt 0$, $\exists \delta \gt 0$ such that
$$0 \lt |x-a| \lt \delta \implies |f(x)-L|\lt \epsilon$$
Now I tried to prove $$\lim_{x \to 0}\frac{\sin x}{x}=1$$
We are given $\epsilon$ and we need to figure out $\delta$
So we have:
$$\left|\frac{\sin x}{x}-1\right|\lt \epsilon$$
Assuming $x \gt 0$ we get
$$|\sin x-x|\lt x\epsilon$$
and for $x \gt 0$ we have $x \gt \sin x$
So
$$x-\sin x\lt x\epsilon$$
$$x(1-\epsilon)\lt \sin x \lt 1$$
So we get
$$x \lt \frac{1}{1-\epsilon}$$
Hence $$\delta=\frac{1}{1-\epsilon}$$
Now I took $\epsilon=0.01$ to get $\delta=\frac{100}{99}=1.0101\cdots$
Now $$\left|\frac{\sin 1.0101...}{1.0101...}-1\right|=|0.8384-1|=0.161$$
But $$0.161 \gt \epsilon=0.01$$
Why is this contradictory?