First definition of Projective Space. For same natural $n\ge 1$, let $\mathbb{R}P^n:=\{V\subset\mathbb{R}^{n+1}\;|\; \dim(V)=1\}$. We introduce a topology on $\mathbb{R}P^n$ as follow: define $\pi\colon\mathbb{R}^{n+1}\setminus\{0\}\to\mathbb{R}P^n$, $\pi(x)=\text{span}\{x\}$, we say $U\subset\mathbb{R}P^n$ is open if $\pi^{-1}(U)$ is open in $\mathbb{R}^{n+1}\setminus\{0\}$, with induced topology of $\mathbb{R}^{n+1}$.
Second definition of Projective Space. For same natural $n\ge 1$, consider $\mathbb{S}^n:=\{x\in\mathbb{R}^{n+1}\;|\; ||x||=1\}$, in $\mathbb{S}^n$ we define $x\sim y$ iff $x=y$ or $-x=y$. The map $q\colon\mathbb{S}^n\to \mathbb{S}^n/\sim$, $q(x)=[x]=\{-x,x\}$ is called projection map, we set $\mathbb{P}^n:=\mathbb{S}^n/\sim$. We will say that $U$ is open in $\mathbb{P}^n$ if $q^{-1}(U)$ is open in $\mathbb{S}^n.$
Exercise The $\mathbb{R}P^n$ is homeomorphic to $\mathbb{P}^n.$
My attempt. Let $\varphi\colon\mathbb{P}^n\to\mathbb{R}P^n$, $\varphi(\{-x,x\})=\text{span}\{-x,x\}.$
$\varphi$ is injective: if $\varphi(\{-x,x\})=\varphi(\{-y,y\})$ we have that if $t\in\{\lambda x\;|\;\lambda\in\mathbb{R}\}=\{\mu y\;|\;\mu\in\mathbb{R}\}$, $t=\lambda x=\mu y\Rightarrow$ $||t||=|\lambda|=|\mu|$, then $\lambda=\pm \mu$. Hence $\mu x=\mu y$ or $-\mu x=\mu y$ $\Rightarrow x=y$ or $-x=y\Rightarrow$ $x\sim y\Rightarrow[x]=[y]\Rightarrow \{-x,x\}=\{-y,y\}$.
$\varphi$ is onto. Let $r\in\mathbb{R}P^n$, then $r=\text{span}(\tilde{x})$, where $\tilde{x}\in\mathbb{R}^{n+1}\setminus\{0\}$.
Let $x\in r\cap\mathbb{S}^n$, then $x\in \text{span}\{\tilde{x}\}\cap\mathbb{S}^n$, hence $x=\frac{\tilde{x}}{||\tilde{x}||}$ or $x=-\frac{\tilde{x}}{||\tilde{x}||}$, therefore
$$\varphi(\{-x,x\})=\text{span}\bigg\{-\frac{\tilde{x}}{||\tilde{x}||},\frac{\tilde{x}}{||\tilde{x}||}\bigg\}=\text{span}\bigg\{\frac{\tilde{x}}{||\tilde{x}||}\bigg\}=\text{span}\{\tilde{x}\}=r$$
It's correct?
It remains to show that $\varphi$ is an open application, that is it must send open in open. I don't know how to proceed, could anyone give me a hint?
Thanks!