I have been given two matrices that are defined as follows: $$A = \left(\begin{array}{rrrr} -1&2&-3&-1\\% 8&-7&12&4\\% 6&-6&10&3\\% 2&-2&3&2\\% \end{array}\right), B= \left(\begin{array}{rrrr} -1&-4&7&-6\\% 0&11&-25&25\\% -4&8&-25&28\\% -4&4&-16&19\\% \end{array}\right) \in \mathbb{Q}^{4 \times 4}.$$
I need two prove or disprove that the matrices A and B are similar.
The matrices A and B have the same eigenvalue, which are equal to $1$. Furthermore, I found out that the eigenspaces of the different matrices are not equal. The eigenspace for a given matrix A and eigenvalue a is defined as the solution set of: $$V_a(A) = \mathbb{L}(A - a \cdot E_n, 0)$$ The geometric multiplicity for a matrix $A$ of an eigenvalue $a$ is defined as the dimension of the eigenspace: $$g_a(A) = dim (\mathbb{L}(A - a \cdot E_n, 0))$$ For the eigenspaces and geometric multiplicity of the matrices A and B, it follows: $$V_1(A) = \mathbb{L}(A - 1 \cdot E_4, 0) = \{x_2 \cdot \left(\begin{array}{rrr} 1\\% 1\\% 0\\% 0\\% \end{array}\right) + x_3 \cdot \left(\begin{array}{rrr} -3/2\\% 0\\% 1\\% 0\\% \end{array}\right) + x_4 \cdot \left(\begin{array}{rrr} -1/2\\% 0\\% 0\\% 1\\% \end{array}\right) | x_2, x_3, x_4 \in \mathbb{Q}\}$$ $$\Rightarrow dim (\mathbb{L}(A - 1 \cdot E_4, 0)) = 3$$ $$\Rightarrow g_1(A) = 3$$ $$V_1(B) = \mathbb{L}(B - 1 \cdot E_4, 0) = \{x_3 \cdot \left(\begin{array}{rrr} -3/2\\% 5/2\\% 1\\% 0\\% \end{array}\right) + x_4 \cdot \left(\begin{array}{rrr} 2\\% -5/2\\% 0\\% 1\\% \end{array}\right) | x_3, x_4 \in \mathbb{Q}\}$$ $$\Rightarrow dim (\mathbb{L}(B - 1 \cdot E_4, 0)) = 2$$ $$\Rightarrow g_1(B) = 2$$ Because the geometric multiplicity of both matrices are not equal I would assume that matrices A and B are not similar. But how do I prove this formal. I know if two matrices (e.g. A and B) are similar, it follows: $$A = T^{-1} \cdot B \cdot T \, \text{for} \, T \in GL_n(\mathbb{Q})$$ How would I use this definition to disprove the given statement.