Is there any inequality involving difference of powers? I want to estimate say $x^p - y^p$, or $|x^p -y^p|$ hopefully in terms of $|x-y|^p$
Edit : $0 < p <\infty$, and I'm sure that there will be cases depending on $p$
Is there any inequality involving difference of powers? I want to estimate say $x^p - y^p$, or $|x^p -y^p|$ hopefully in terms of $|x-y|^p$
Edit : $0 < p <\infty$, and I'm sure that there will be cases depending on $p$
In fact, we have the following inequalities:
If $x,y>0$, then $|x-y|^p\le p|x-y|(x^{p-1}+y^{p-1}), \text{ for }p\ge 1$,
If $x\ge y>0$, then $|x-y|^p\le \frac{p}{2}x^{p-2}|x-y|(x^2+y^2), \text{ for }p\ge 2$.
(Mazur Inequality) For any real $x,y$, then $2^{1-p}|x-y|^p\le\big|x|x|^{p-1}-y|y|^{p-1}\big|\le|x-y|(|x|^{p-1}+|y|^{p-1}), \text{ for }p\ge 1$.
$$|x^p-y^p|=|x-y||x^{p-1}+x^{p-2}y+\cdots+xy^{p-2}+y^{p-1}|$$ If $|x|<M$, $y<M$ this gives us $$|x^p-y^p|<pM^{p-1}|x-y|$$