0

Let be D a unique factorization domain, k in D and $x=kd $ with $d$ a gcd of $a, b$ and $y$ a gcd of $ka, kb$ prove that x and y are associates; x divides y and y divides x. My attempt:

x=kd and a=dr, b=ds hence ka=kdr, kb=kds so ka=xr, kb=xs hence x divides y because y is gcd of ka and kb.

How to prove that y divides x?

asv
  • 861
  • 1
  • 6
  • 15

1 Answers1

1

Hint $\,\ k\mid (ka,kb)\mid ka,kb\,\Rightarrow\, (ka,kb)/k\mid a,b\,\Rightarrow\,(ka,kb)/k\mid (a,b)\,\Rightarrow\,(ka,kb)\mid k(a,b)$

Remark $ $ In fact the proof can be done more efficienitly bidirectionally as here.

Bill Dubuque
  • 272,048