One way to view Bezout as an identity is to define functions $a_{x,y},\ b_{x,y}\,$ so that
$$ a_{x,y}\ x + b_{x,y}\ y\, =\, 1\ \ \ {\rm for\ all\ coprime}\,\ x,y\in\Bbb Z$$
Such functions implicitly exist in most extended Euclidean algorithm software. Compare
$$\bmod xy\!:\ \ \bar a_{x,y}\,x + \bar b_{x,y}\,y\,\equiv\, 1\ \ \ {\rm for\ all\ coprime}\,\ x,y\in\Bbb Z\qquad\qquad\ \ $$
by using the functions $\ \ \bar a_{x,y} = x^{-1}\bmod y,\,\ \bar b_{x,y} = y^{-1}\bmod x,\, $ see $ $ Inverse Reciprocity.
For Bezout we can put: $\ a_{x,y} = x^{-1}\bmod y,\,\ b_{x,y} = (1-a_{x,y}\,x)/y \ $ for example.
The general Bezout identity (for all $\,x,y\neq 0,0)$ reduces to the above by cancelling $\gcd(x,y)$
Remark $ $ We introduced the functions $\,a,\,b\,$ in order to eliminate the existential quatifiers in $\, \forall\, x,y\ \exists\, a,b\!:\ ax + b y = 1,\,$ which leaves only universal quantifiers remaining, i.e. an "identity". The same idea works generally - see Skolemization.
A well known example is inverses: $\,\forall\, x\ \exists\, y\!:\ xy\, = 1,\,$ where we define the inverse function $\,y_x = x^{-1}\,$ which yields the identity $\,\forall x\!:\ x\,x^{-1} = 1\,$ in groups. Notice the close relationship with the modular example above, where the functions actually are (modular) inverses.
.