Find the solutions of the congruence using Chinese Remainder Theorem: $2x^2 - 3x -2 \equiv 0\mod21$
By now I've done this: $$ \left\{ \begin{array}{c} 2x^2-3x-2\equiv 0\mod 7\\2x^2-3x-2\equiv 0\mod3 \end{array} \right. $$
$$
2x^2-3x-2\equiv 0\mod 7 \\ \Delta = 25 = 5^2 \\x_1,x_2 = (2a)^{-1}*(-b \pm \sqrt\Delta) \\ x_1=4^{-1}*2 = 2*2 = 4 \mod 7 \\ x_2 = 4^{-1}*(-8)= 6*2 = 5 \mod 7
$$
Then I made $\Delta$ for the (mod 3) equation and got $x_3=1 \mod 3, x_4=2 \mod 3$
So I got:
$$
x \equiv 1 \mod 3 \\ x \equiv 2 \mod 3 \\ x \equiv 4 \mod 7 \\ x \equiv 5 \mod 7 \\
$$
And I don't know what to do further. I should apply Chinese Remainder Theorem on it or it would be wrong?
Edit: Thanks for the help! The correct form was: $$ x \equiv 1 \mod 3 \\ x \equiv 2 \mod 3 \\ x \equiv 2 \mod 7 \\ x \equiv 3 \mod 7 $$ And I understand how to solve it.
$2 \cdot 4^2 - 3 \cdot 4 - 2 = 32 - 12 - 2 = 18 \not \equiv 0 \mod 7$.
– Ruben Jun 23 '19 at 15:53